
A Journey to Cuddle with an API

Technical Solutions Architect, Cisco

@broadcaststorm

Tim Miller



Tim Miller
Technical Solutions Architect, Cisco

Tim has been automating infrastructure since 
before it was cool with HPC clusters over 20 
years ago. He leverages that expertise on the 
GVE DC team in Cisco, evangelizing various 
cloud native technologies like Terraform, 
Ansible, K8s and the APIs, Python, and 
methods to deploy them.



• Backstory
• The Many Faces of User Experience
• Wrap Up

Agenda



• Script hackers
• Dabblers in coding
• Systems/network engineers serious about coding
• Those ready to take their first step into a more 

formal approach to building a software project

Intended Audience



The Backstory



Hierarchy of Automation

REST API SDK
Libraries/
Modules

Automation
Frameworks

Postman 
Collections

Python Requests

Language 
Bindings

Models and 
Methods

Typical user tasks
Hides Internal 

App Complexity

Low barrier to 
entry

Minimal/No Code

Increasing Complexity



Hierarchy of Automation

REST API SDK
Libraries/
Modules

Automation
Frameworks

Increasing Complexity

Feature Completeness



Hierarchy of Automation

REST API SDK
Libraries/
Modules

Automation
Frameworks



Hierarchy of Automation

REST API SDK
Libraries/
Modules

Automation
Frameworks



Hierarchy of Automation

REST API SDK
Libraries/
Modules

Automation
Frameworks



What do I want to build?



Focus on UX
Helped make key architectural decisions early
Permitted flexibility on deferring decisions

Language matters
Goals and User Experience provide guidance
Requirements (for me) led to analysis paralysis

Requirements vs User Experience



High Level Goals

Command Line Demo Setup Leverage Elsewhere



utilctl resource action
utilctl resource sub action End User

User 
Experience

The Many Faces of UX



utilctl.py switch add --help



What we will do
Focus on a CLI analogs to common GUI actions

What we won’t do
Generic inputs - not a CLI replacement for OpenAPI GUI or 
Postman

End User Goals



Python modules for CLI
Click, Typer

Directory Layout
cli/resource/action.py

Leverage existing default values if not provided

Technology Outcome



utilctl resource action
utilctl resource sub action

Avoid service logic
UI module flexibilityCLI

Developer
End User

User 
Experience

The Many Faces of UX



cli/switch/actions.py



Logical Tasks
Login to Service
Error Handling
Wrappers around resource operations for input validation

Common Data Structures
Connection, Authentication, Switch Identification

CLI Developer Goals



Directory Layout
sdk/ resource/*.py

Identified clear need to build an application library
Helped focus decisions around standards, object behavior
Goal to return all data as Python native data types

Technology Outcomes



API Version Independence
Python Bindings to API
Objects/Classes for Service

utilctl resource action
utilctl resource sub action

Avoid service logic
UI module flexibilityCLI

Developer
End User

Library
Developer

User 
Experience

The Many Faces of UX



sdk/switch/add_switch.py



Insulate API changes, new features
Well defined classes for product specific resources

Interfaces, Switches, Fabrics
Template/Policy

Abstraction of global functionality
Specialization for each specific template
Policy instantiation functionality

Library Goals



Abstraction layer for API calls
api/rest/all/core.py, api/rest/v11_4/*.py, …

Model hierarchy with version dependence
api/models/all/core.py, api/models/v11_4/*.py, …

Embed version dependent selection in connection

Technology Outcomes



API Version Independence
Python Bindings to API
Objects/Classes for Service

utilctl resource action
utilctl resource sub action

Do I have to build all
this by hand?

Isn’t there a better way?

Avoid service logic
UI module flexibilityCLI

Developer
End User

SDK
Library

Developer

User 
Experience

The Many Faces of UX



Relying on Python templating of generator tool developers
Security and validity is still your responsibility

Does not mitigate the need to understand how to consume API

Ease of use strongly dependent on OpenAPI spec
Missing return types may result in a lot of manual processing

Autogenerated Python API interface



api/models/all/core.py



API changes will happen, but historically few/minor
Default to methods landing in common object (“all”)
Break code out to version specific when necessary

No further abstraction needed. Version dependence 
handles any URL/resource endpoint changes.

SDK Goals



Object oriented approach
Inheritance and polymorphism

Leverage api/rest directory for possible autogen option

Technology Outcomes



Wrapping it all up



Reframing how you view the project can lead to more 
natural technology choices without all the details

You don’t have to figure the project all out on day 1

You do have to enjoy the project

Summary



Sample Project Repo
https://github.com/CiscoSE/DevNetCreate21-TS47-Journey

OpenSource Project Resources
https://opensource.guide/starting-a-project/

CLI Parsers
Click: https://click.palletsprojects.com/
Typer: https://typer.tiangolo.com

OpenAPI Generator
https://openapi-generator.tech
https://github.com/OpenAPITools/openapi-generator

References

https://opensource.guide/starting-a-project/
https://opensource.guide/starting-a-project/
https://click.palletsprojects.com/
https://typer.tiangolo.com/
https://openapi-generator.tech/
https://github.com/OpenAPITools/openapi-generator



