
ıılıılı cısco

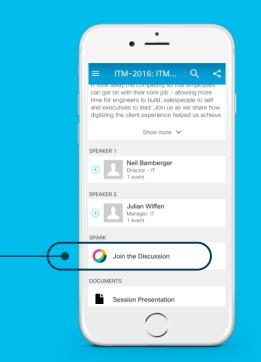
iliilii cisco

Cisco UCS as an Advanced Computing Platform for the Enterprise Tae Hwang, Architect, Cisco Tim Miller, Virtual Systems Engineer, Cisco Bob Crovella, Solutions Architect, NVIDIA **TECINI-2543**

Agenda

- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration with Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

Cisco Webex Teams 🥥


Questions?

Use Cisco Webex Teams (formerly Cisco Spark) to chat with the speaker after the session

How

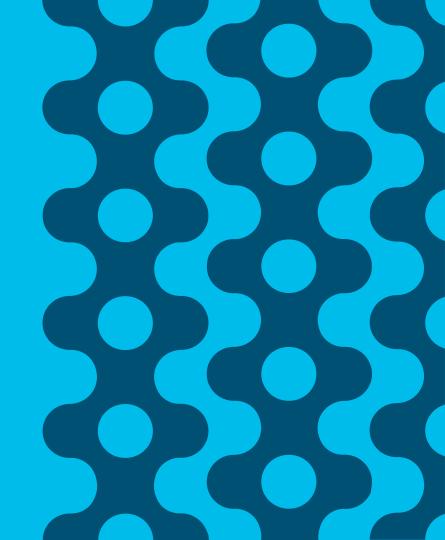
- **1** Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Webex Teams will be moderated by the speaker until June 18, 2018.

cs.co/ciscolivebot#TECINI-2543

Timothy E. Miller, PhD, CCNA, RHCA(*)

- Linux User 1993
- UNIX/Linux Systems Admin 1995
- HPC Systems Engineer 2002
- Network Engineer 2008
- Network Architect 2012
- Financial Services Vertical 2015
- Cisco Systems Engineer 2017
 - UCS, MDS, VXLAN EVPN, CloudCenter, Programmability, Docker/K8s

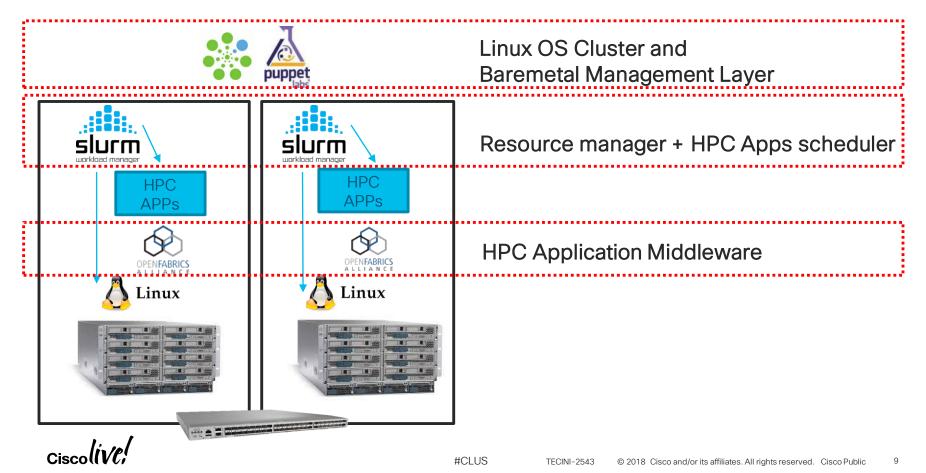

Agenda

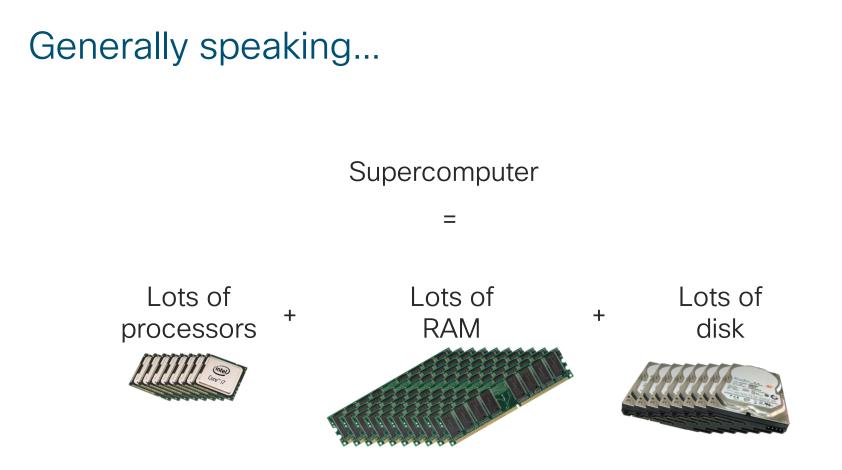
- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration with Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

What is HPC?

Let's Define High Performance Computing

- x86 Clustered Linux Baremetal System that supports high computing needs.
- No longer FEW fastest Supercomputers in the world. Several nodes HPC cluster can support hundreds of CPU cores (thousands of GPU cores).
- Linux is the platform for science/research traditional STEM computation, social science, economy/finance, Machine Learning, Big Data, and etc.
- 200 of Top500 use Ethernet as their fabric
- System Components: X86 System + Network/Fabirc (Ethernet, Infiniband, Omnipath, etc) + Storage + HPC Software*

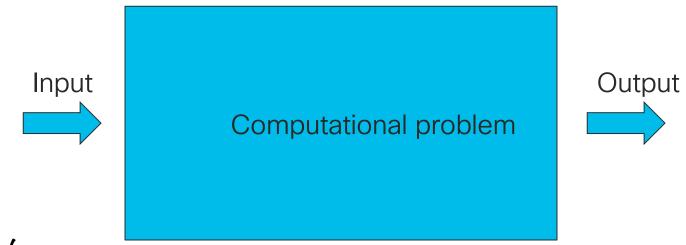



UNIVERSITY

- Has no Engineering School
- 150 Node HPC and growing
- Business school, School of Romantic Language school use HPC

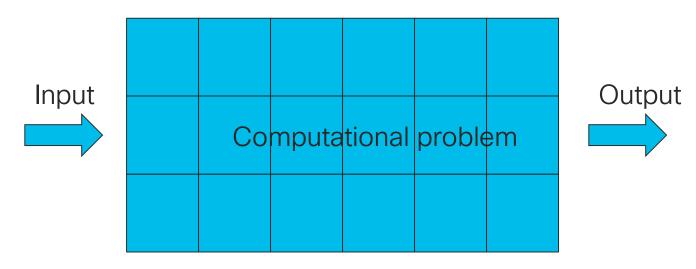
HPC Components

Ciscol

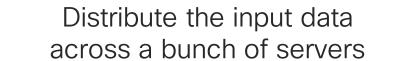

Just a bunch of servers?

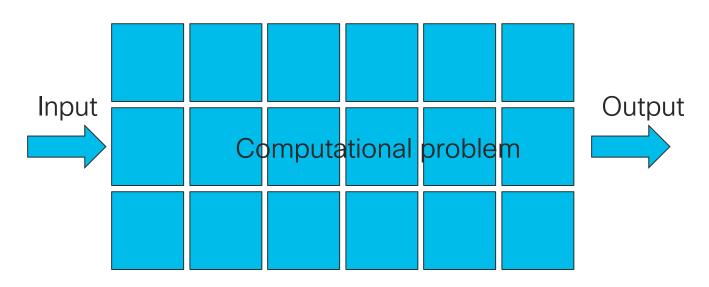
The difference between supercomputers and web farms and database farms (and ...)

All the servers act *together* to solve a single computational problem

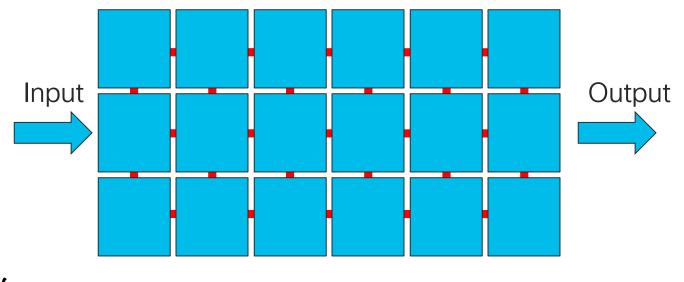


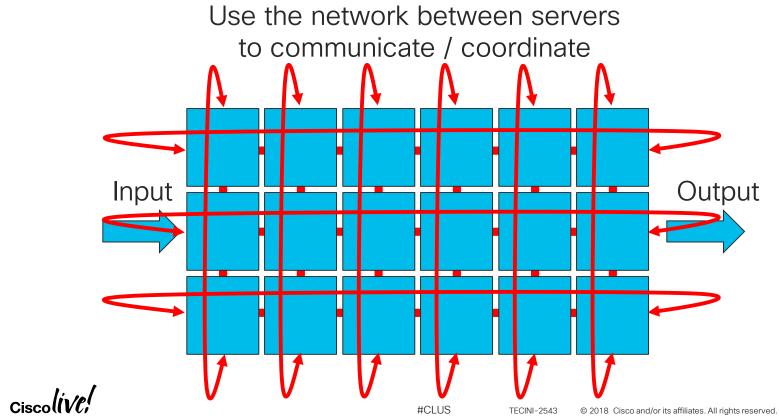
Take your computational problem...

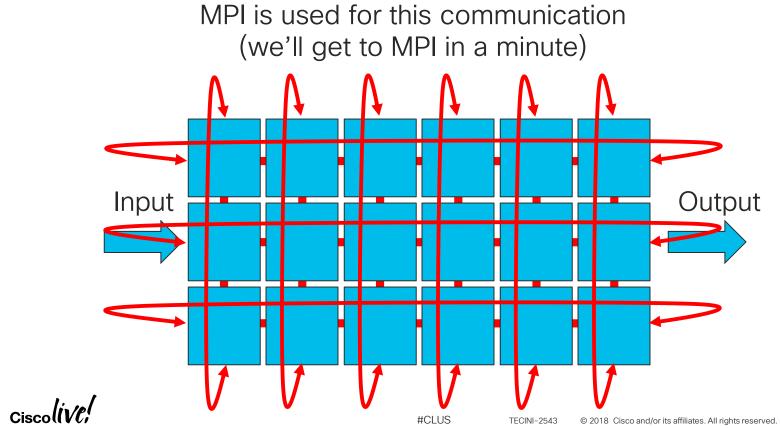


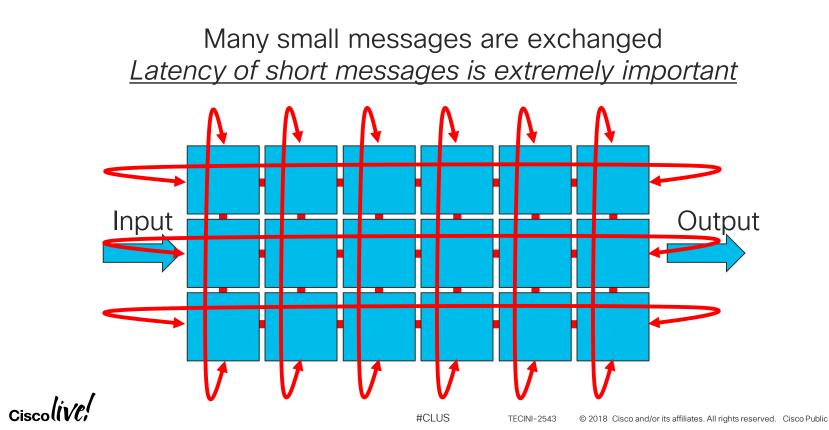


...and split it up!

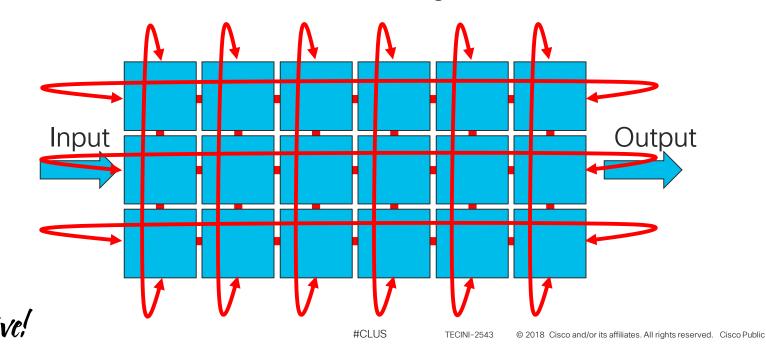




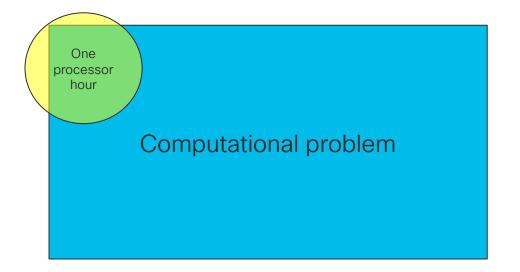




Use the network between servers to communicate / coordinate



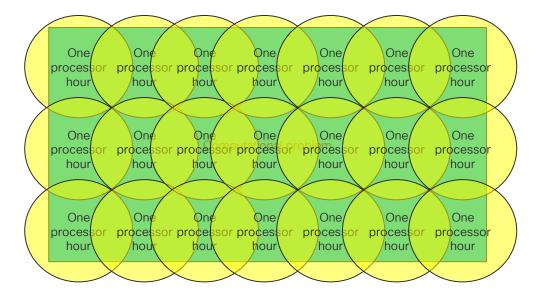
lic 18


Parallel application

Individual (Linux) processes are running in parallel on each server, coordinating with each other

19

Why go to so much trouble?



1 processor = ...a long time...

TECINI-2543 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 20

Why go to so much trouble?

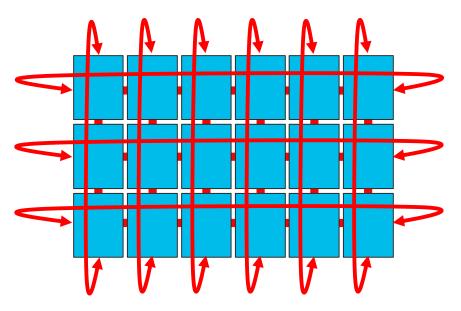
21 processors = ~1 hour (!) Disclaimer: scaling is rarely perfect

High Performance Computing

HPC

=

Using "supercomputers" to solve real world problems that are TOO BIG for laptops, desktops, or individuals servers

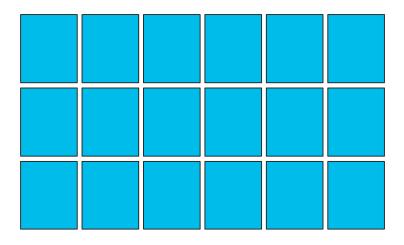


Other HPC / TC terms

Tightly coupled application

Each Linux process in the overall parallel application frequently sends short messages, usually to a small number of peer Linux processes.

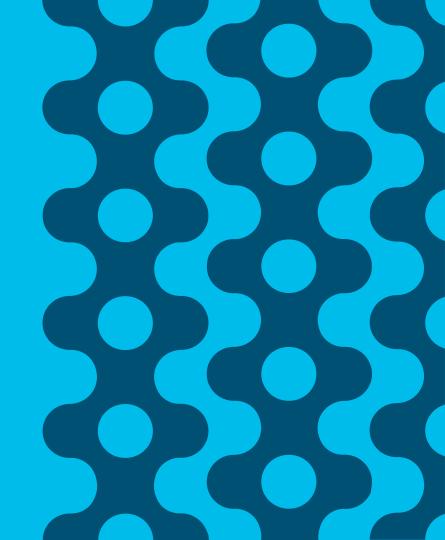
Network latency -- and congestion management -- of short messages is extremely critical.

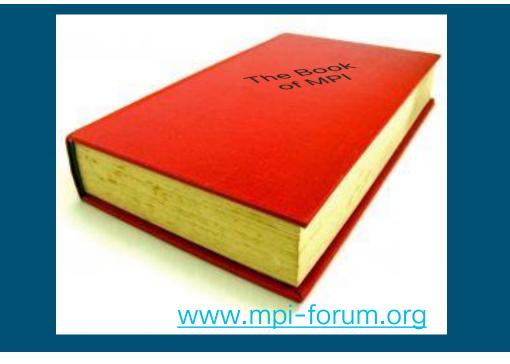


Other HPC / TC terms

Embarrassingly parallel application

The overall job is parallel, but little to no communication or coordination is required to compute the final result.


Network latency is likely not a factor. Bandwidth may or may not be, depending on the size of the input / output data sets.


What is MPI?

What is the Message Passing Interface (MPI)?

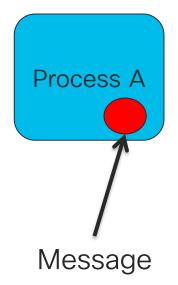
A standards document

There are many implementations of the MPI standard

Some are closed source

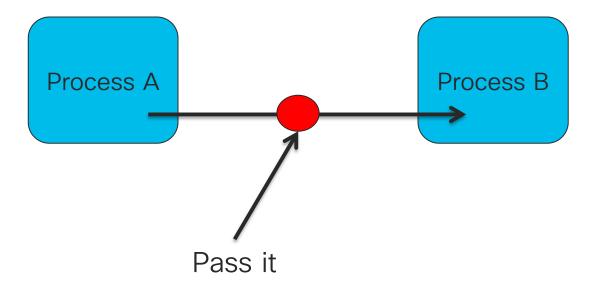
Others are open source

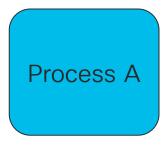
They are usually comprised of middleware and a runtime

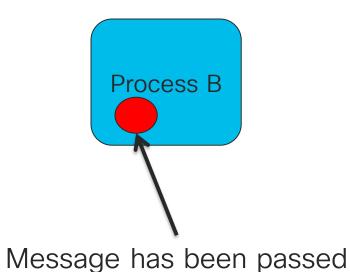

So what is MPI for?

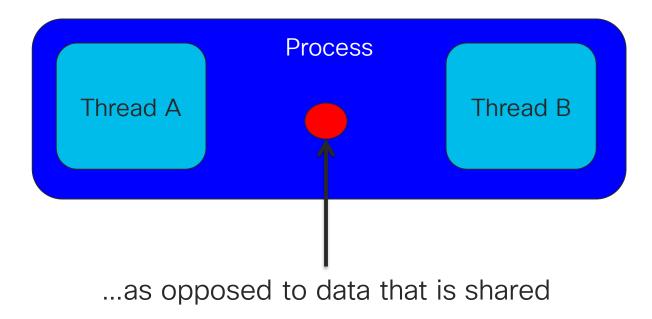
Let's break it down...

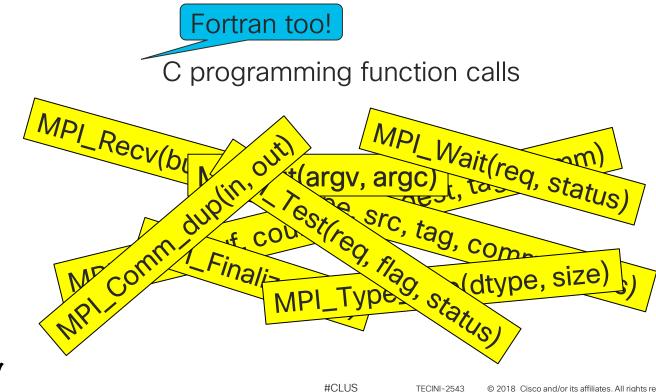
Cisco

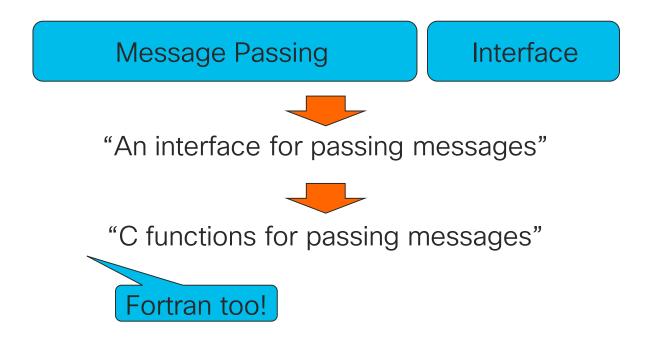

1. Message passing


Cisco



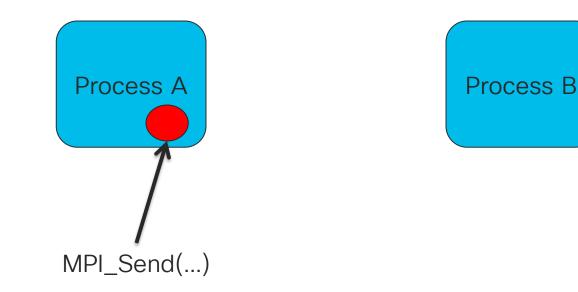

1. Message passing


1. Message passing

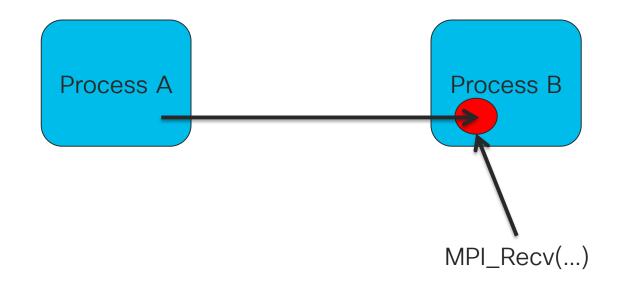


2. Interface

Cisco



Putting it back together



C/Fortran functions for message passing

C/Fortran functions for message passing

Really? Is that all MPI is?

"Can't I just do that with sockets?"

#CLUS

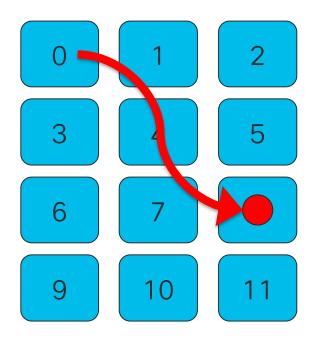
Comparison

- (TCP) Sockets
- Connections based on IP addresses and ports
- Point-to-point communication
- Stream-oriented
- Raw data (bytes / octets)
- Network-independent
- "Slow"

• MPI

- Based on peer integer "rank" (e.g., 8)
- Point-to-point and collective and one-sided and ...
- Message oriented
- Typed messages
- Network independent
- Blazing fast

#CLUS

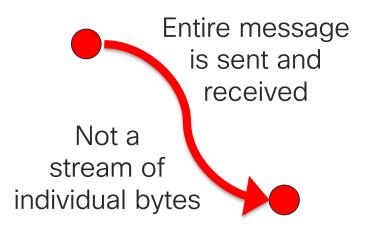

Comparison

Whoa! What are these?

• MPI

- Based on peer integer "rank" (e.g., 8)
- Point-to-point and collective and one-sided and ...
- Message oriented
- Typed messages
- Network independent
- Blazing fast

Peer integer "rank"


• MPI

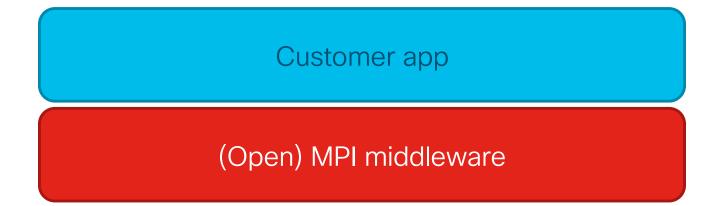
- Based on peer integer "rank" (e.g., 8)
- Point-to-point and collective and one-sided and ...
- Message oriented
- Typed messages
- Network independent
- Blazing fast

#CLUS

Messages, not bytes

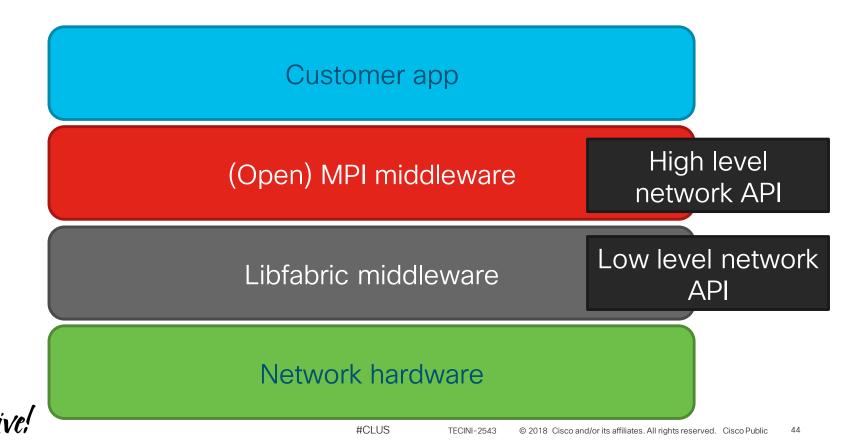
• MPI

- Based on peer integer "rank" (e.g., 8)
- Point-to-point and collective and one-sided and ...
- Message oriented
- Typed messages
- Network independent
- Blazing fast

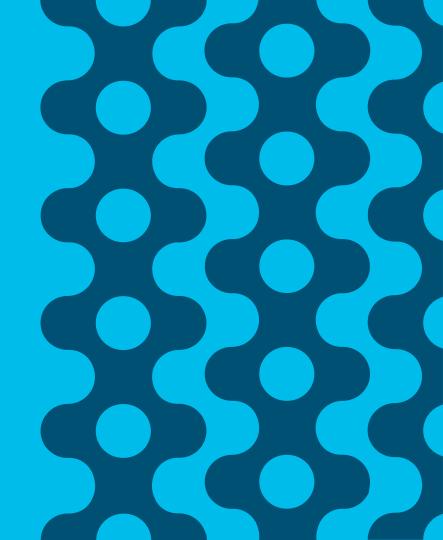

Messages, not bytes

Contents: 23 doubles 17 integers 98 structs Not a bunch of bytes!

• MPI


- Based on peer integer "rank" (e.g., 8)
- Point-to-point and collective and one-sided and ...
- Message oriented
- Typed messages
- Network independent
- Blazing fast

MPI is the top layer of the API stack


#CLUS

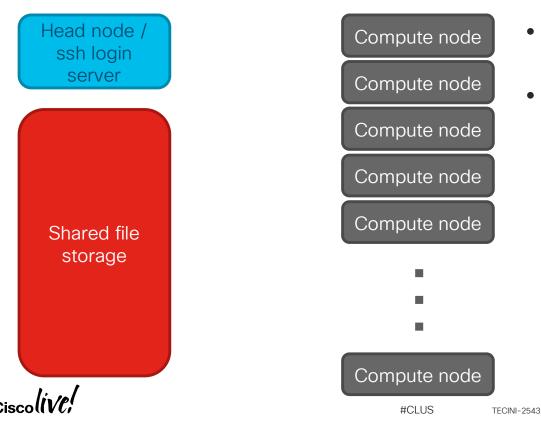
But there's more below that

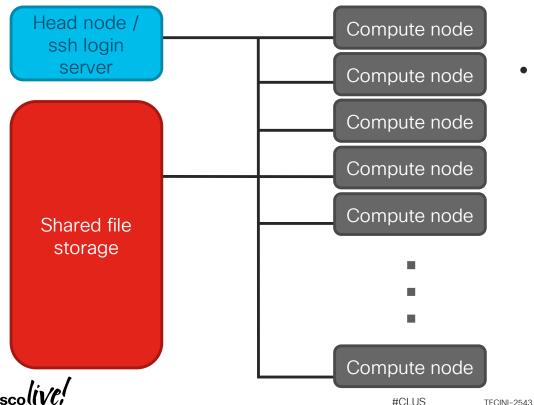
HPC Cluster Components

- Linux on bare metal
- Large RAM
- Used for interactive logins
 - Compile / build applications
 - Submit jobs

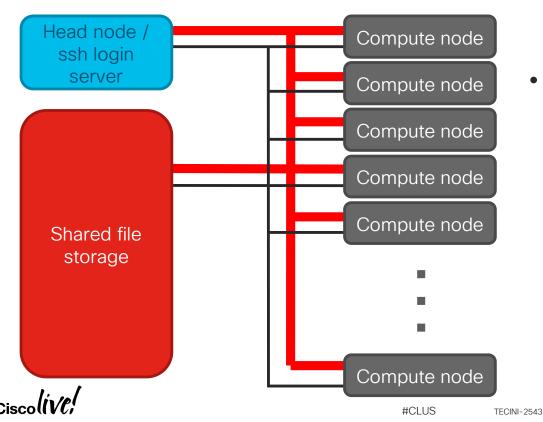
#CLUS

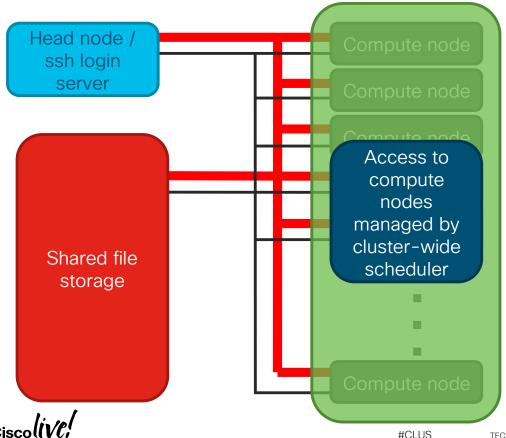
• Provides cluster job scheduler, NTP, ...etc.



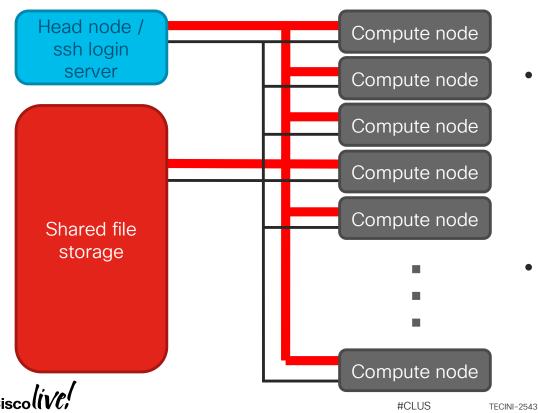

Head node / ssh login

- Network file system
 - Possibly served from head node
 - Possibly have distinct file server(s)
 - May be traditional NFS
 - Or may be a parallel filesystem
- Available across entire cluster



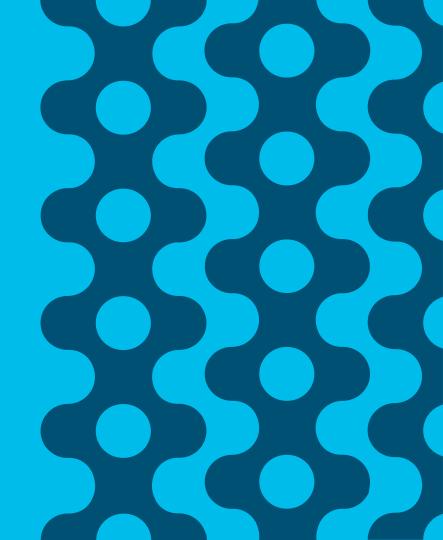

- Large number of compute nodes
- Each compute node:
 - High end Xeon
 processor
 - 2-8 GB RAM per core
 - Minimal local disk
 - (customers have different religions about the specifics)

- Low end cluster
 - A single Ethernet/TCP/IP network
 - Possibly even 1 Gbps

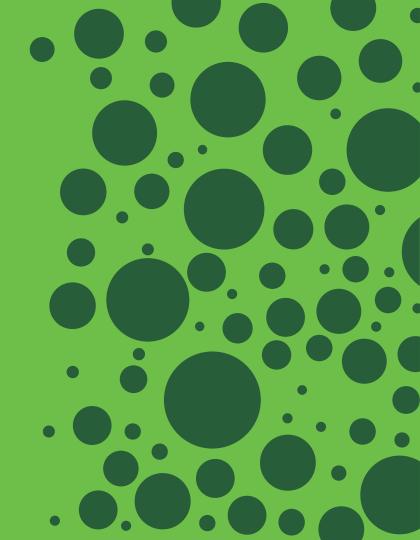


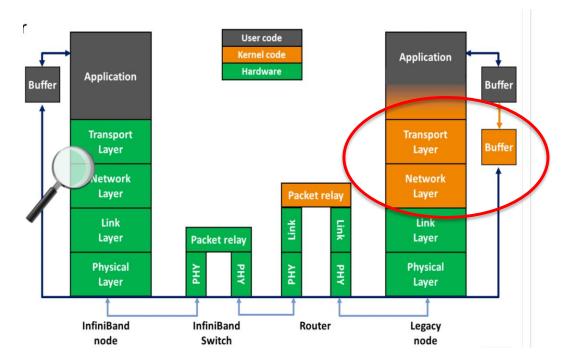
- Mid / high end cluster
 - Cheap Ethernet network for command / control (1/10/40GE)
 - Low latency network for east-west traffic, e.g., InfiniBand.

Scheduler to submit jobs
SLURM, LSF, Torque, PBS, ...


- OS/compute node provisioning
 - Bright, XCAT, LSF, ...
 - Some customers have home-grown solutions
 - Will NOT be virtual machines

- General purpose clusters
 - Run all kinds of HPC applications
 - Usually for large institutions with many internal customers
- Specific purpose clusters
 - Run only one (or small set of) parallel application(s)
 - Usually a small set of users

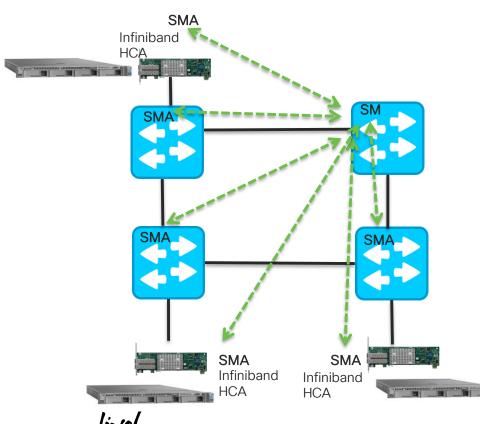

HPC Fabric Types



Infiniband

Infiniband Network Stack From a Host Perspective

Infiniband leverages Kernel Bypass for it does not use OS TCP/IP Stack.


#CLUS

Ciscolive,

It reduces latency.

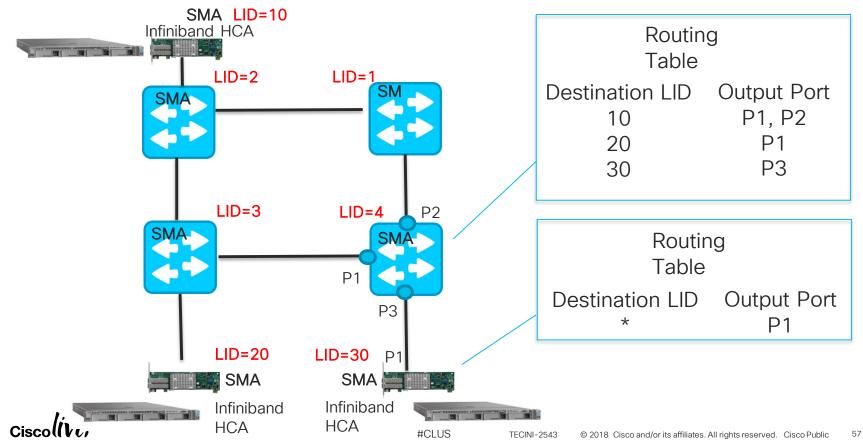
55

Infiniband – Simple L2 Routing Network

Subnet Manager (SM) – Runs on switch or on server. It communicates with Subnet Manager Agents (SMA). SM can be thought as a master or a controller.

Subnet Manager Agent (SMA) – Runs on switches and HCA. And it communicates with SM. SM can be thought as SMA as slaves.

SM assigns 16 bit Link ID (LID) to all switches and Host Channel Adapters (HCA) – LID is a L2 address (think as MAC Address).

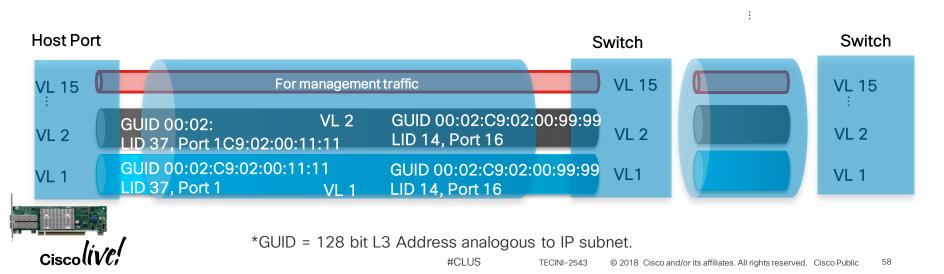

SM calculates L2 routing

#CLUS

Several routing algorithm available. Popular one is shortest-path routing (Dijkstra algorithm).

SM pushes the routing table to SMA.

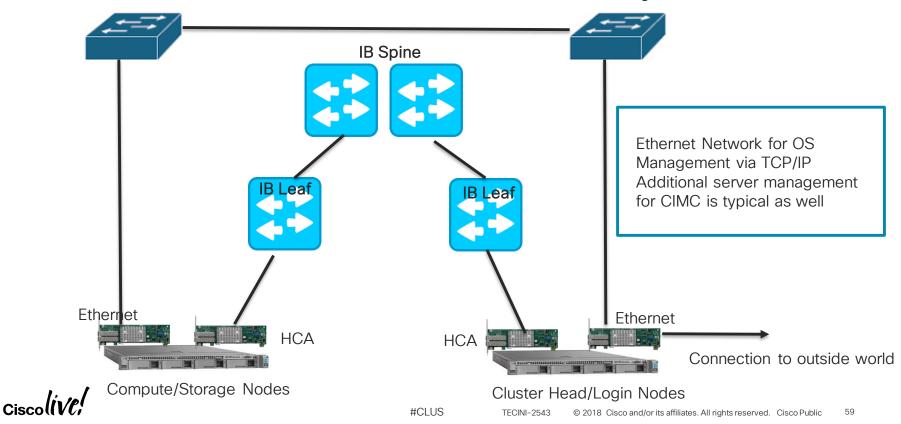
Infiniband – Sample Routing


Infiniband Network QoS

Virtual Lanes

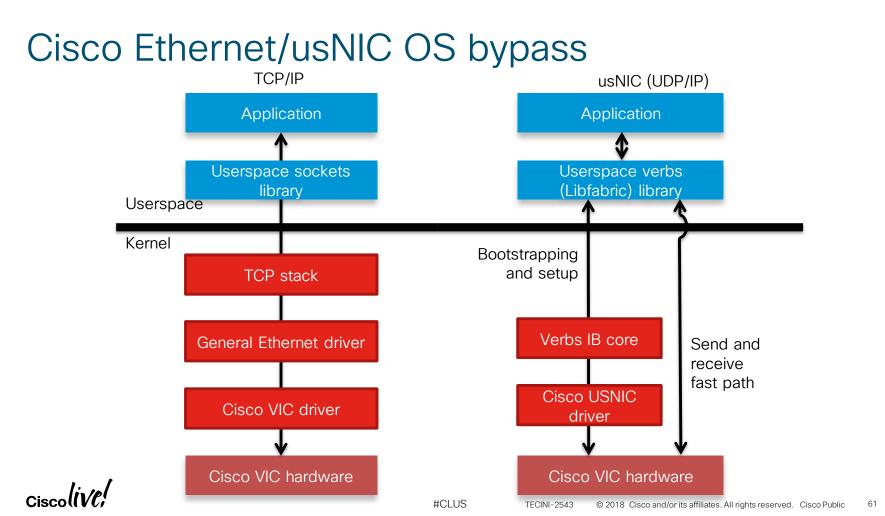
- Each Virtual Lane uses different buffers to send its packet toward the other side.
- VL 15 is Subnet Manager (mgmt) traffic only
- VL 0-7 are used for traffic

Credit Based Flow Control


- Receiver calculates credit limit sends the info to the Transmitter.
- Transmitter only transmit packets if there are enough credit limits to the packets it can send.

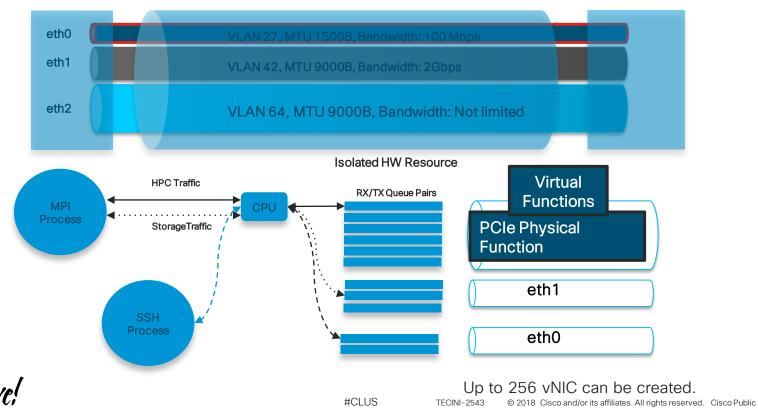
Typical Infiniband Network

Ethernet Management SW


Ethernet Management SW

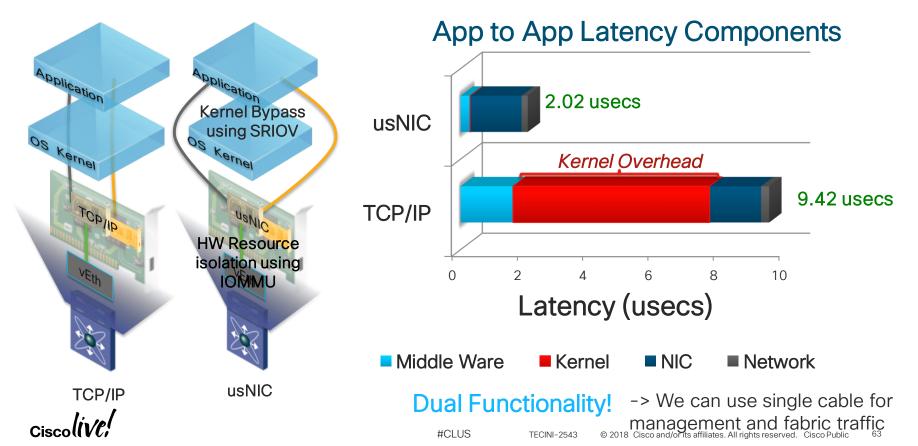
Ethernet is Here

- Ethernet is most widely used L2 Technology networking can be managed by IT group.
- Ethernet is growing rapidly with many options (1/10/25/40/50/100G) – Infiniband vendors expanding Ethernet solutions
- More and more ultra-low latency Ethernet NICs and switches options are available
- Most Ethernet switches use store and forward operation. For low latency cut-through switching is employed.
- Ethernet in HPC fabric typically means "TCP/IP" thus "slow".

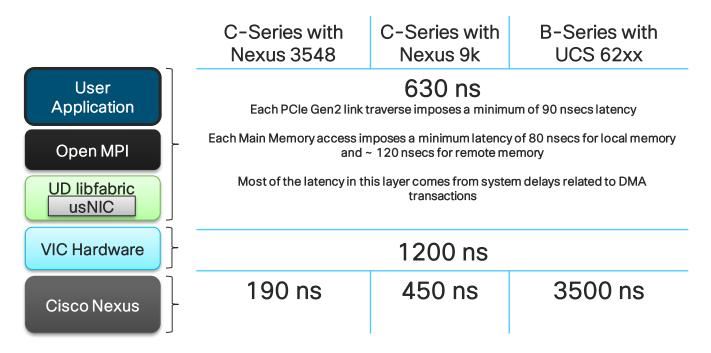


usNIC Network QoS

Host Port


Cisco

Switch Port


62

App to App Latency Factors

Networking Latency Comparison

Cisco C-Series vs. B-Series

RDMA over Converged Ethernet (RoCE)

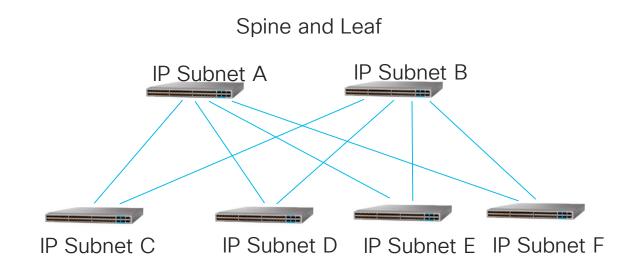
#CLUS

*Existing Infiniband based HPC applications do not need modifications

Customer app

MPI middleware

Open Fabric Enterprise Distribution


Network hardware/Ethernet

RDMA supports <u>zero-copy</u> networking by enabling the <u>network adapter</u> to transfer data directly to or from application memory, eliminating the need to copy data between application memory and the data buffers in the operating system.

The RoCEv2 protocol exists on top of either the UDP/IPv4 or the UDP/IPv6 protocol.^[2] The UDP destination port number 4791 has been reserved for RoCE v2.^[10] Since RoCEv2 packets are routable the RoCE v2 protocol is sometimes called Routable RoCE^[11]

What is RoCE v2

*Because RoCE v2 is IP routable, the topology can be fully meshed.

Nexus PFC Support for RoCE

switch (config) # interface Ethernet1/1

switch (config-if) # flowcontrol receive on

switch (config-if) # flowcontrol send on

switch (config) # interface Ethernet1/1

switch (config-if) # flowcontrol receive on

switch (config-if) # flowcontrol send on

switch (config) # class-map type qos RDMA

switch (config-cmap-qos) # match cos 0

switch (config-cmap-qos)# exit

<-- RDMA is just the name of the class

#CLUS

<-- Classify all traffic with CoS 0, in this case untagged traffic.

Nexus PFC Support for RoCE

switch (config)# policy-map type network qos QOS_NETWORK

switch (config-pmap-nqos)# class type network-qos RDMA

switch (config-pmap-nqos-c)# pause pfc-cos 0

switch (config-pmap-nqos-c)# exit

switch (config-pmap-nqos)# exit

switch (config)# system qos

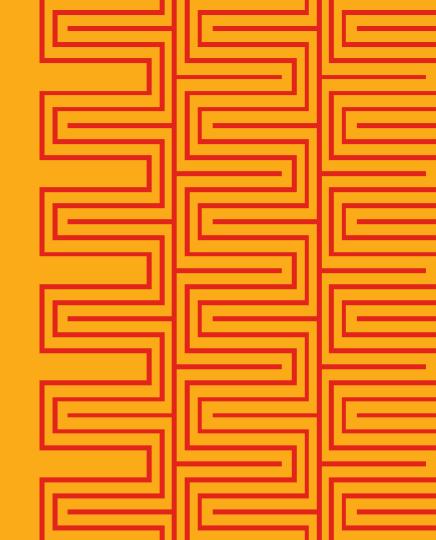
switch (config)# service-policy type network-qos QOS_NETWORK

#CLUS

<-- QOS_NETWORK is just the name of the policy

<-- Use the RDMA class as the traffic that will be policed in this case.

<-- Pause all classified traffic that has CoS 0


<-- Apply QOS_NETWORK policy to the switch (all ports)

Agenda

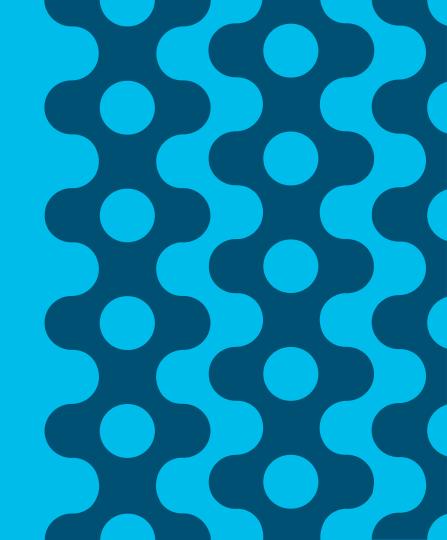
- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration with Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

Cluster Management and Scheduling Demonstration

Agenda

- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration with Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

Agenda


- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration w/Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

- Server Overview
- GPU Overview
- UCS Infrastructure
- UCS Advantages
- UCS Designs

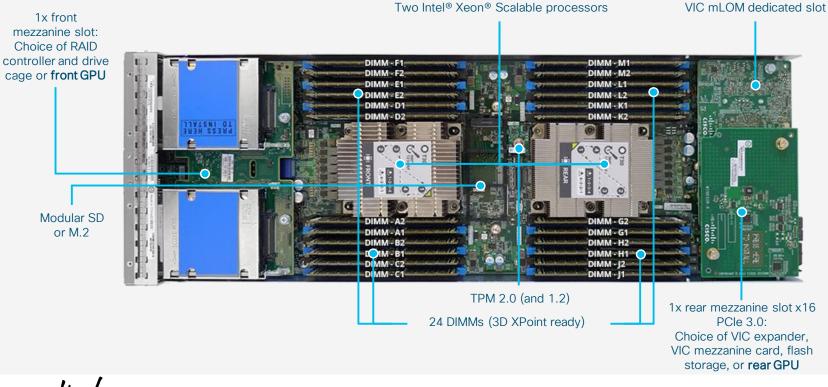
Servers

Unified Computing Systems

M5 - Blade Servers

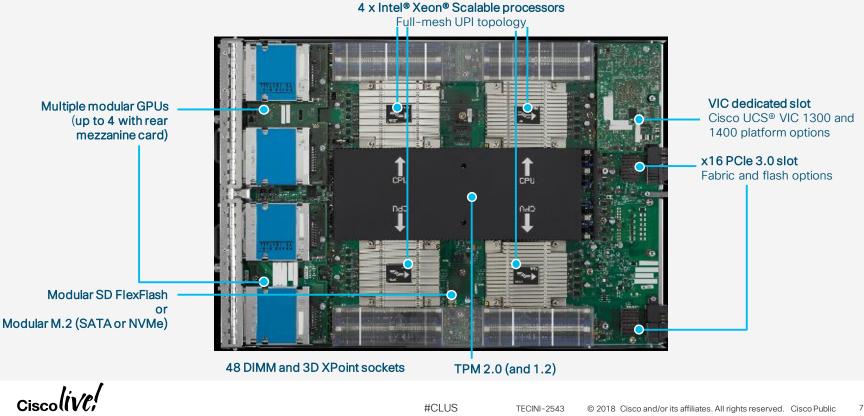
Ideal for Bare Metal Enterprise, VDI, or Dense Virtualization/ Consolidation Workloads

Up to two Intel Xeon Processor Scalable Family (Max: 56 Cores total) 24 DIMMs, up to 3TB Up to 80 Gbps I/O Up to 2 NVIDIA P6 GPUs Up to 2 SD/M.2 cards Up to 2 SFF HS drives

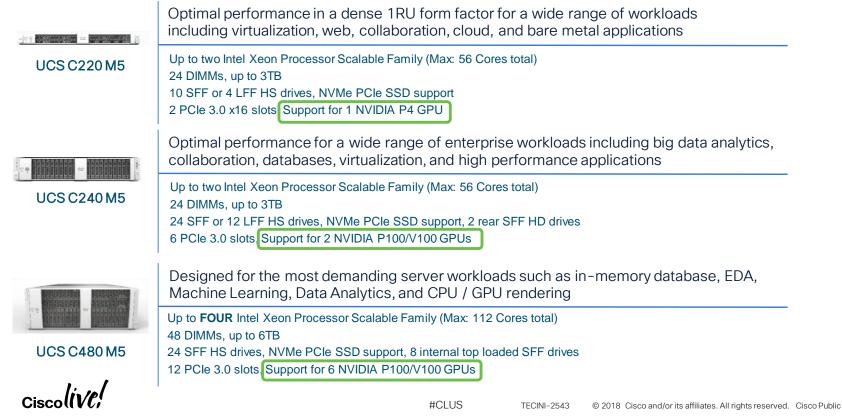

UCS B480 M5

High Performance Platform designed for Compute-Intensive and Memory-Intensive Enterprise Workloads

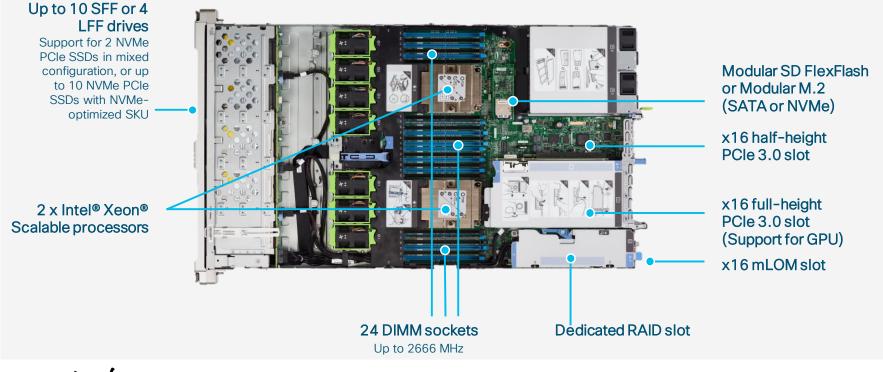
Up to four Intel Xeon Processor Scalable Family (Max: 112 Cores total) 48 DIMMs, up to 6TB Up to 160 Gbps I/O Up to 4 NVIDIA P6 GPUs Up to 4 SD/M.2 cards Up to 4 SFF HS drives



Unified Computing Systems B200 M5


Ciscolive

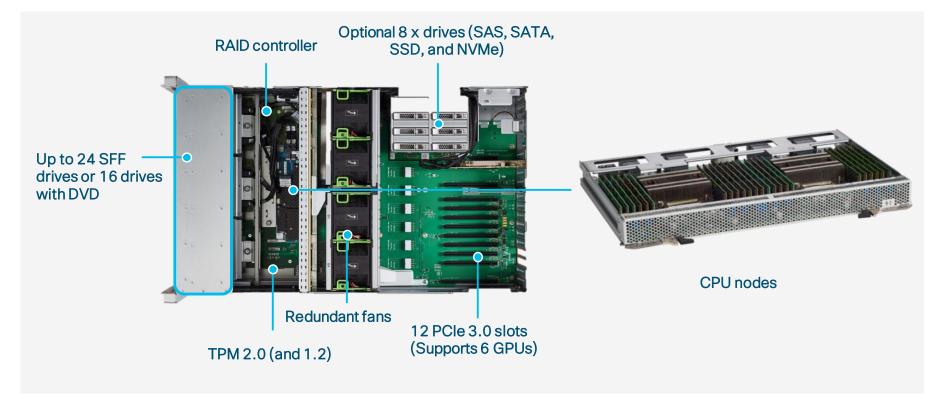
Unified Computing Systems B480 M5


UCS Rack Servers

M5 - C-Series

77

Unified Computing Systems C220 M5

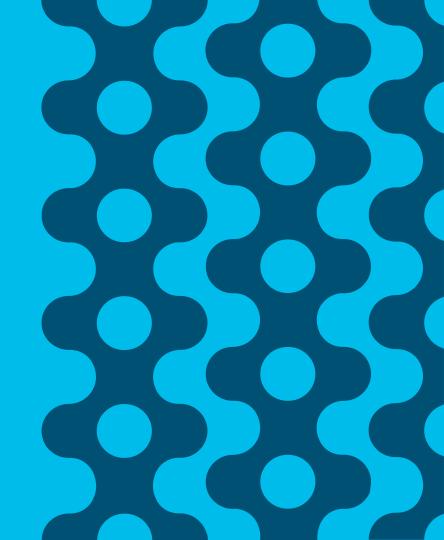


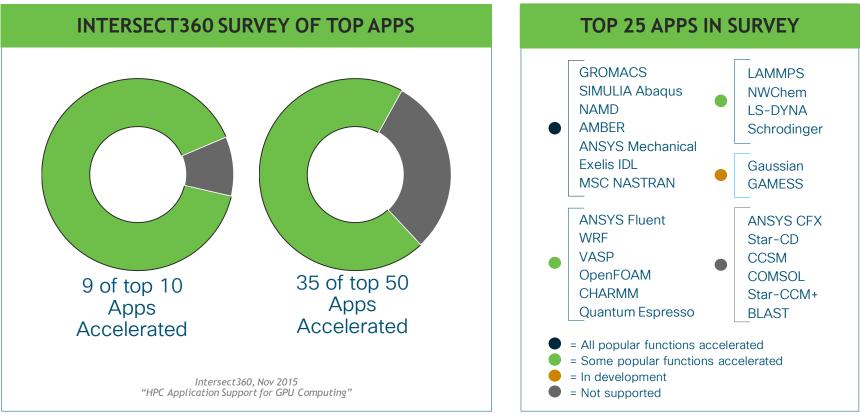
TECINI-2543 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 78

Unified Computing Systems C240 M5

Up to 24 SFF or 12 LFF drives Modular SD FlexFlash or Support for 4 NVMe Modular M.2 (SATA or PCIe SSDs in mixed NVMe) configuration, or up to 10 NVMe PCIe SSDs (2 Up to 2 optional rear hotrear) with NVMeswappable 2.5-inch drives optimized SKU Can be NVMe PCle SSDs or SAS, All SAS and SATA (not SATA, and SSD in standard SKUs NVMe) drives managed Up to 6 PCle 3.0 slots by dedicated RAID controller and Up to 4 full-height, full-length x16 supported in Cisco UCS[®] Manager Support for 2 GPUs 2 x Intel® Xeon® Scalable processors x16 mLOM slot **Dedicated RAID slot** 24 DIMM sockets Up to 2666 MHz speeds

Unified Computing Systems C480 M5




Cisco UCS S3260 Storage Server **Drives** M5 Server Node 4 Rows of Hot-Swappable HDD 2/4/6/8/10/12TB with up to 2 Rows of 400GB/800GB/1.6TB/3.2TB SSD Total Top Load: 56 drives Server Node Up to (2) Based on 2x Intel Scalable CPUs, LSI 12G Dual-Chip RAID or Passthrough HBA, 14x 16/32/64/128GB DDR4 RAM (2 Slots 3D XPoint Ready), 2x 500GB/1TB/2TB NVMe **Optional Second Node** Server Node or Drive Expansion FAN or PCIe Expansion 8 Hot-Pluggable Fans **1Gb Host Management Port** System I/O Controller (SIOC) **Power Supply** Up to (2) Cisco VIC 1300(SIOC2)/ 4 Hot-Pluggable PSUs 1400(SIOC3*) or 3rd Party Adapters* Up to (2) NVMe per SIOC Up to (4) 240GB/480GB/1.6TB SSDs HW RAID, Hot-Plug, OS/Boot

GPUs

70% Of Top HPC Apps Accelerated

Ciscolive!

UCS GPU Portfolio UCS Integrated for accelerated VDI, Deep Learning, and HPC Applications

Virtualization

UCS M6 Blade GPU For M4 blades only Enterprise Class NVIDIA GPU for Remote Knowledge Workers, Task Workers and Designers

UCS P6 Blade GPU For M5 blades only Doubles user density for Remote Knowledge Workers, Task Workers and Designers

Accelerated Compute

UCS Tesla P100 For M4 and M5 Deep Learning Training and **HPC** applications

UCS Tesla V100 **For M5 server only World's most advanced data center GPU ever built to accelerate AI and HPC

UCS NVIDIA M60 For M4 and M5* server Ultimate choice for Remote **Engineering Workstations** and Application Delivery via the Cloud

UCS NVIDIA M10 For M4 and M5 servers Accelerated Remote Desktop, Maximum User Density per Server

UCS Tesla P40 For M5 server only **Remote Engineering** Workstations and Fast Inferencing for Deep Learning

UCS Tesla P4 For M5 server only Inferencing Engine for Deep Learning at the edge.

*M5 support for M60 in 3.2(2c) ** Needs UCSM 3.2(3)

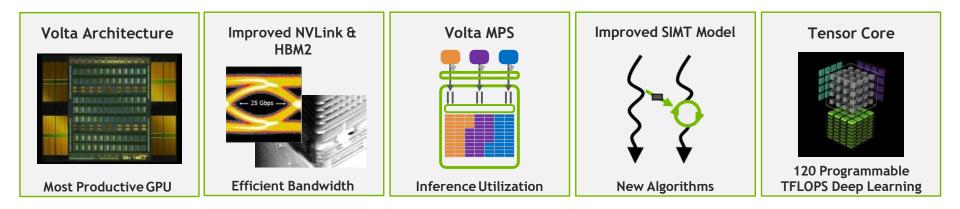
Blade Optimized GPU

Industry's Only 2–S Blade to offer multiple GPU, densest GPU platform 16 GPU in 6RU Chassis

PID	Description
UCSB-GPU-P6-F	NVIDIA GRID P6 Front Mezzanine
UCSB-GPU-P6-R	NVIDIA GRID P6 Rear Mezzanine

	TESLA M6	TESLA P6
GPUs	Single GM204	Single GP104
CUDA Cores	1,536	2,048
Memory Size	8 GB GDDR5	16 GB GDDR5
Form Factor	MXM (blade server)	MXM (blade server)
Thermal	bare board	bare board
Power	100W (75W opt)	90W (70W opt)
No. of GPU per B200M5	1	2
Max Concurrent Users	8 (1GB FB)	16 (1GB FB)
H.264 1080p30 Streams	16	24
3DMark 11	10,558	17,600
SPECviewperf 12	45	75
SGEMM TFLOPS	2.7	4.7
Memory Bandwidth	147 GB/s	192 GB/s

Rack Optimized GPUs Full UCSM Integration


II UCSM Integration			
	Tesla P4 for Ultra- Efficient Scale-Out Servers	Tesla P40 for Maximum- Inference Throughput Servers	Tesla P100: The Universal Datacenter GPU
Single-Precision Performance (FP32)	5.5 TeraFLOPS	12 TeraFLOPS	10.6 TeraFLOPS
Half-Precision Performance (FP16)			21 TeraFLOPS
Integer Operations (INT8)	22 T0PS*	47 TOPS*	
GPU Memory	8 GB	24 GB	16 GB
Memory Bandwidth	192 GB/s	346 GB/s	732 GB/s
System Interface	Low-Profile PCI Express Form Factor	Dual-Slot, Full-Height PCI Express Form Factor	Dual-Slot, Full-Height PCI Express Form Factor, or SXM2 Form Factor with NVLink
Power	50 W/75 W	250 W	250 W (PCIe) 300W (SXM2)
Hardware-Accelerated Video Engine	1x Decode Engine, 2x Encode Engines	1x Decode Engine, 2x Encode Engines	

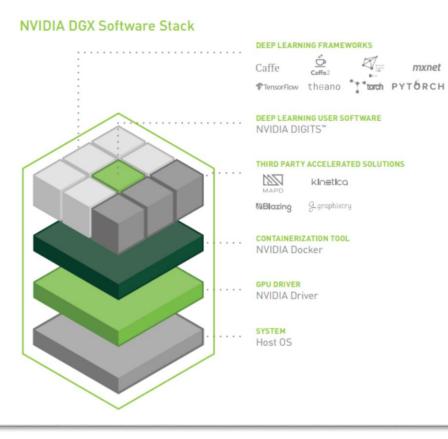
#CLUS

*Tera-Operations per Second with Boost Clock Enabled

Cisco

INTRODUCING TESLA V100

5120 CUDA Cores, 640 Tensor Cores


The Fastest and Most Productive GPU for Deep Learning and HPC

GPU Performance Comparison

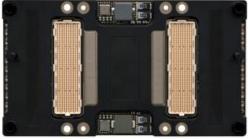
	P100	V100	Ratio
Training acceleration	10 TOPS	120 TOPS	12x
Inference acceleration	21 TFLOPS	120 TOPS	6x
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x
HBM2 Bandwidth	720 GB/s	900 GB/s	1.2x
NVLink Bandwidth	160 GB/s	300 GB/s	1.9x
L2 Cache	4 MB	6 MB	1.5x
L1 Caches	1.3 MB	10 MB	7.7x

Cisco

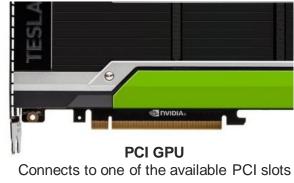
NVIDIA DGX-1

SYSTEM SPECIFICATIONS

GPUs	8X Tesla V100	8X Tesla P100
TFLOPS (GPU FP16)	960	170
GPU Memory	128 GB to	tal system
CPU		e Intel Xeon /4 2.2 GHz
NVIDIA CUDA® Cores	40,960	28,672
NVIDIA Tensor Cores (on V100 based systems)	5,120	N/A
Maximum Power Requirements	3,20	00 W
System Memory	,	3 MHz DDR4 IMM
Storage	4X 1.92 TB	SSD RAID 0
Network	Dual 10 Gb	E, 4 IB EDR
Software	Ubuntu Lin See Software S	ux Host OS tack for Details

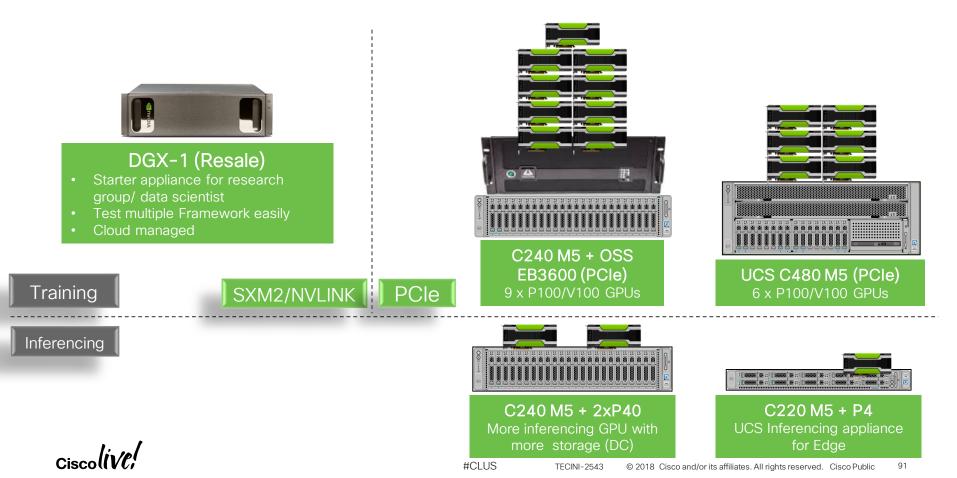

Ciscolive,

#CLUS

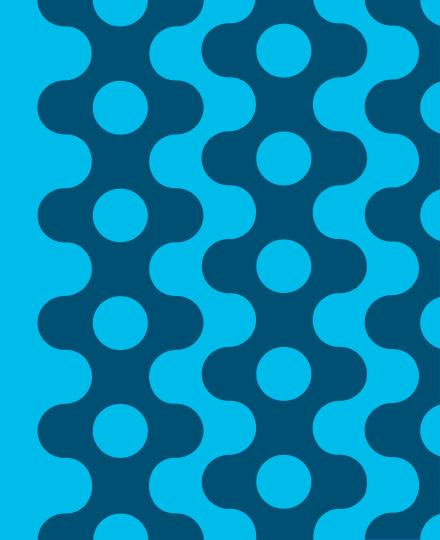

mxnet

NVIDIA DGX-1 SXM2 and PCIe GPU's Compared

	SXM2	PCle
Form Factor		
Performance	>6.5 TF DP, >13 TF SP, >26 TF FP16	-6 TF DP, ~12 TF SP, ~24 TF FP16
Memory Size	32 GB HBM2	32 GB HBM2
emory Bandwidth	-1000 GB/s	~1000 GB/s
PU Peer to Peer	Scalable, Coherent, NVLink	PCle Gen3
Power	300 W	250W
	NVLINK 2.0 = 300 GBytes/s	PCle Gen 3 = 32 GBytes/s



SXM GPU back Connects directly to SXM slot on motherboard



Summary of Cisco UCS AI Solutions

UCS Infrastructure

Unified Computing System Architecture (Blades)

- UCS Manager Embedded- manages entire system
- UCS 6300 Series Fabric Interconnect
 32 x 40GB QSFP+ Port or 24 x 40GB QSFP+ Port & 16 UP Ports
- UCS Fabric Extender UCS 2x00 Series Remote line card
- UCS 5100 Series Blade Server Chassis Flexible bay configurations
- UCS B-Series Blade Server Industry-standard architecture
- UCS Virtual Adapters
 Choice of multiple adapters

Unified Computing Systems

Fabric Interconnects

FI 6332

- 32 x 40GbE QSFP+ ports
- 2.56Tbps switching performance

1RU fixed form factor, two power supplies & four fans

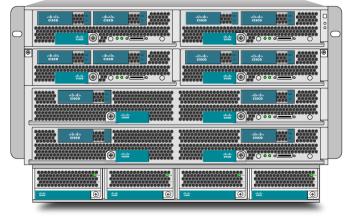
FI 6332-16UP

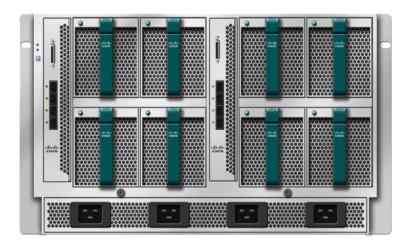
- 24 x 40GbE QSFP+ & 16 x UP ports (1/10GbE or 4/8/16G FC)
- 2.43Tbps switching performance
- 1RU fixed form factor, two power supplies & four fans

Unified Computing Systems Fabric Extenders

IOM 2304

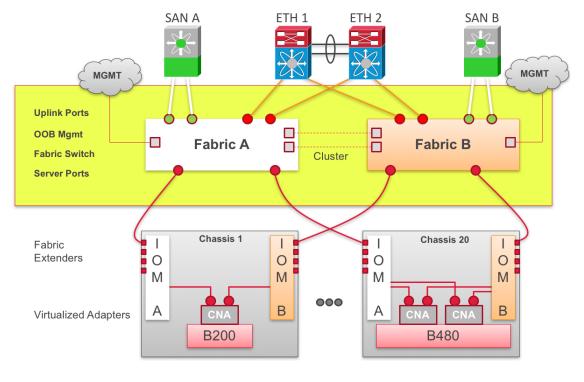
8 x 40GbE server links & 4 x 40GbE QSFP+ uplinks


- 960Gbps switching performance
- Modular IOM for UCS 5108


Unified Computing Systems Blades Chasis

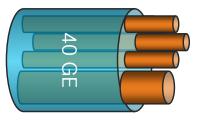
- · Up to 8 Half width server blades
- · Up to 4 Full width server blades
- Redundant Hot Swap Power Supply

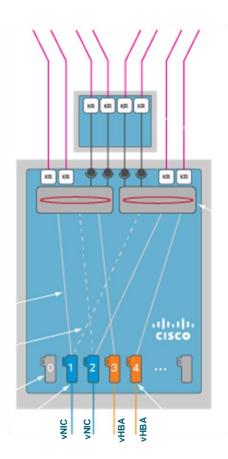
6RU Enclosure


- 2 Hot Swap FEX
- 8 Hot Swap Fan Module

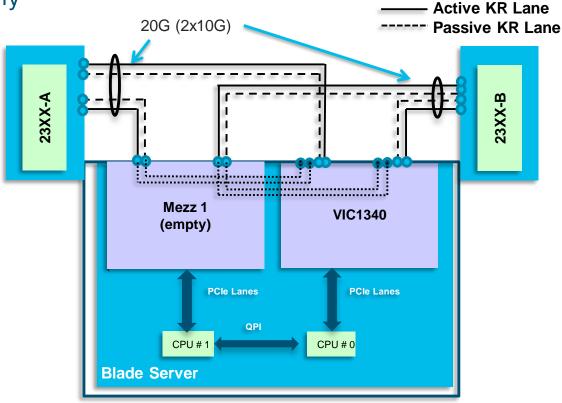
Unified Computing Systems

Distributed Architecture, Unified Fabric

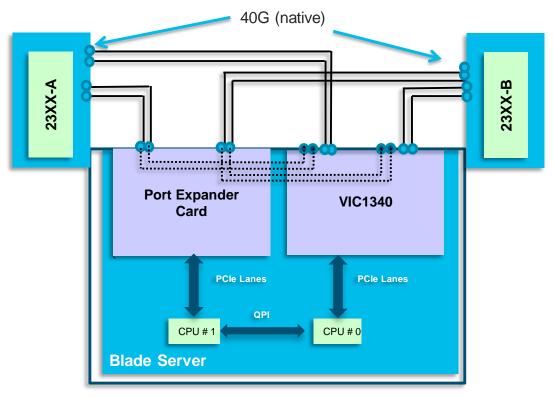



UCS Components Blade VIC's

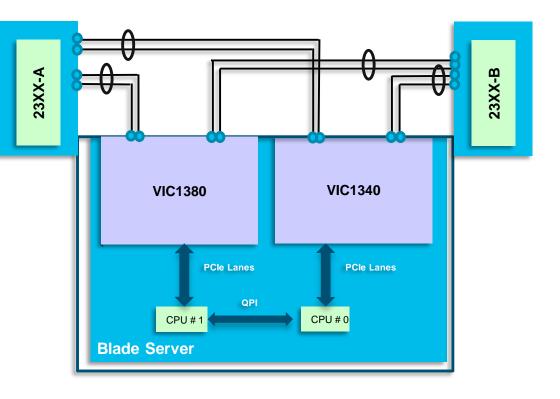
- 3rd Generation
 - VIC 1340 mLOM
 - Optional port expander card
 - VIC 1380 Mezz



Unified Fabric

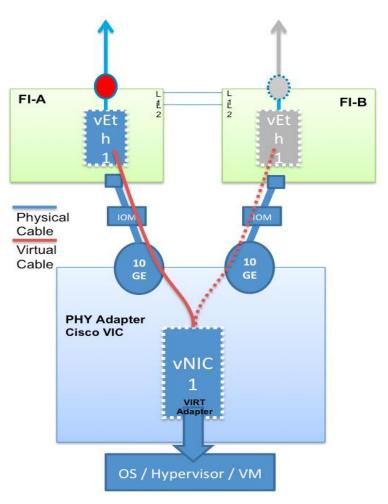


IOM 2304 and Adapter Connection


IOM 2304 and Adapter Connection VIC1340 Plus Port Expander

IOM 2304 and Adapter Connection VIC1340 Plus VIC1380

- Adapter Resiliency
 - 2 independent Adapters
 - vCon placement
- 4 20G connections
- ·20G are 2x10
 - 7 tuple hashing



Unified Computing Systems

UCS Fabric Failover

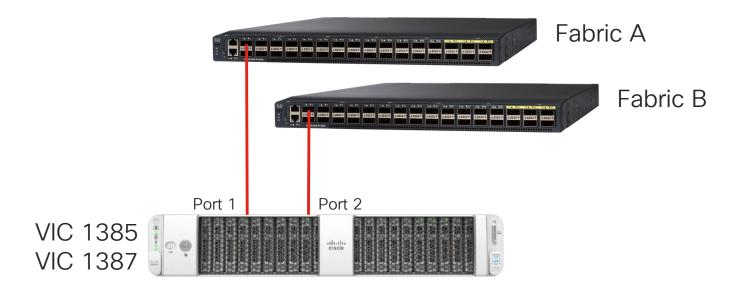
- Fabric provides NIC failover capabilities chosen when defining a service profile
- Traditionally done using NIC bonding driver in the OS
- Provides failover for both unicast and multicast traffic
- Works for any OS.

Unified Computing System Architecture (Rack)

#CLUS

 UCS Manager Embedded- manages entire system

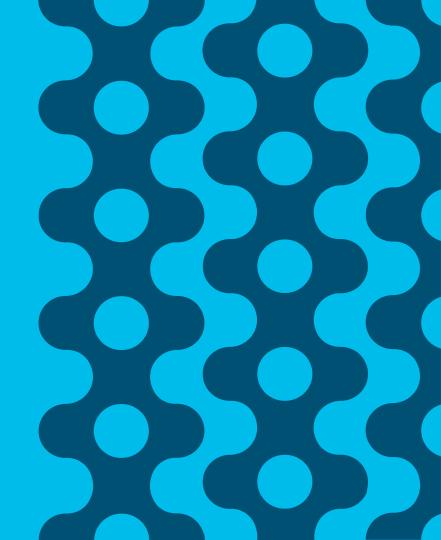
- UCS 6300 Series Fabric Interconnect
 32 x 40GB QSFP+ Port or 24 x 40GB QSFP+ Port & 16 UP Ports
- UCS C-Series Rack Servers (1U, 2U, 4U) Industry-standard architecture
- UCS Virtual Adapters
 Choice of multiple adapters

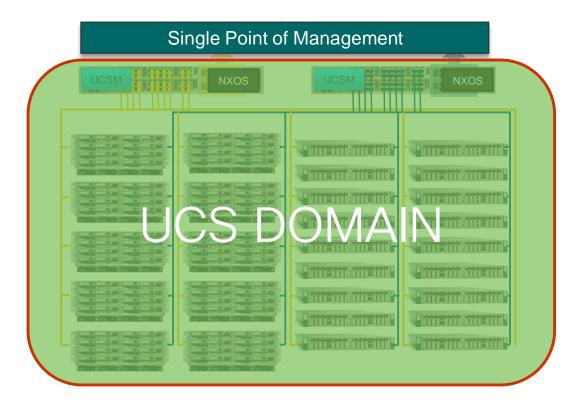


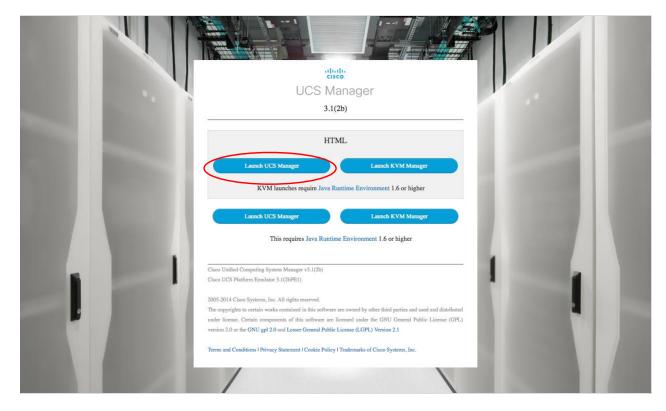
Unified Computing Systems UCS Managed Rack Server Architecture

#CLUS

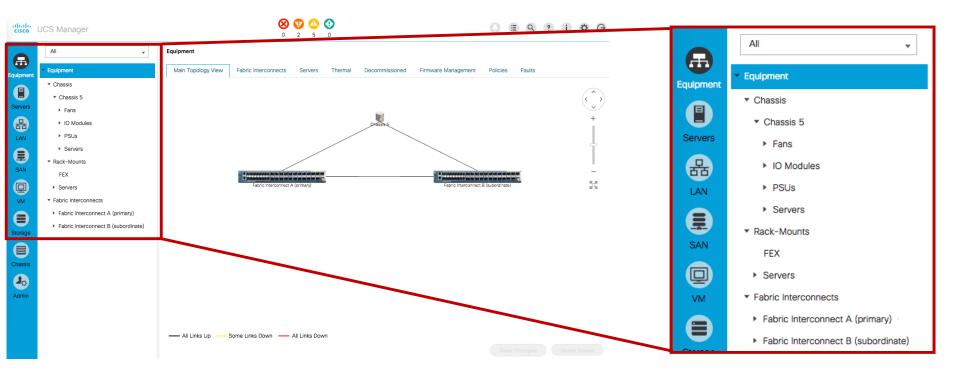
Ciscolive,


Momentary Lapse for Questions

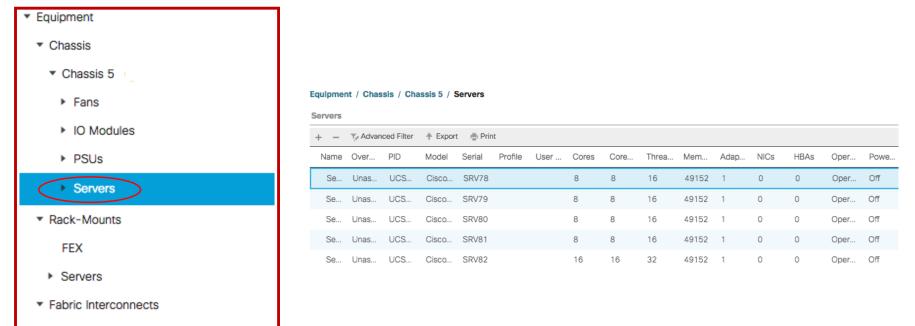

UCS Advantages


UCS Manager - Advantage #1

Single Point of Management and Scaling - UCS Manager



UCS Manager – Advantage #1 HTML5 Browser Based – Management and KVM



Single Point of Management - Equipment

Single Point of Management - Equipment - Server Inventory

#CLUS

Eabric Interconnect A (primary)

Single Point of Management – Equipment – Fabric Interconnects

* Chassis	General Physical Ports Fans PSUs	s Physical Display FSM Faults Events	Neighbors Statistics	
▼ Chassis 5	Fault Summary	Physical Display		
► Fans	8 0 0	AND DOLLARS AND A REAL PARTY AND AND AND AND AND AND AND AND A		
▶ IO Modules	0 1 0 0			
▶ PSUs	Status	📕 Up 📕 Admin Down 📕 Fail 📒 Link Down	Disable Configure as Server Port	
* Servers	Overall Status :	Properties	Configure as Uplink Port	
Server 1	Thermal : ⊘N/A Ethernet Mode : End Host	Name : A Product Name : Cisco UCS 6332 16UP	Configure as FCoE Uplink Port	
Server 2	FC Mode : End Host	Product Name : Cisco UCS 6332 16UP Vendor : Cisco Systems, Inc.	Configure as FCoE Storage Port Configure as Appliance Port	6332-16UP
Server 3	Admin Evac Mode : Off Oper Evac Mode : Off	Revision : 0	Unconfigure	100UL
Server 4	Actions	Available Memory: 15.695 (GB)	Unconfigure FCoE Uplink Port	GB)
Server 5		Locator LED :	Unconfigure Uplink Port Unconfigure FCoE Storage Port	
Rack-Mounts	Configure Evacuation Configure Unified Ports	Part Details	Unconfigure Appliance Port	
FEX	Internal Fabric Manager	Local Storage Information	Unconfigure both	1
Servers	LAN Uplinks Manager NAS Appliance Manager	Access	LAN Uplinks Manager Configure Breakout Port	
 Fabric Interconnects 	SAN Uplinks Manager		·	
 Fabric Interconnect A (primary) 	SAN Storage Manager	High Availability Details		
	Enable Ports V	VLAN Port Count		
Fabric Interconnect B (subordinate)	Disable Ports			

*

Single Point of Management - Servers

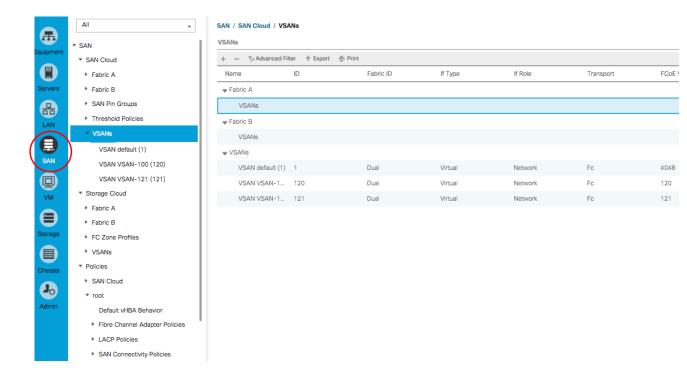
Servers / Policies / root / BIOS	
Main Advanced Boot C	ptions Server Management Events
Processor Intel Directed IO	RAS Memory Serial Port USB PCI QPI LOM and P
Turbo Boost	: O disabled enabled Platform Default
Enhanced Intel Speedstep	: O disabled enabled Platform Default
Hyper Threading	: O disabled O enabled Platform Default
Core Multi Processing	: Platform Default
Execute Disabled Bit	: O disabled O enabled O Platform Default
Virtualization Technology (VT)	: O disabled enabled Platform Default
Hardware Pre-fetcher	: 🔿 disabled 🔿 enabled 💿 Platform Default
Adjacent Cache Line Pre-fetcher	: O disabled O enabled Platform Default
DCU Streamer Pre-fetch	: Odisabled Oenabled I Platform Default
DCU IP Pre-fetcher	: Odisabled Oenabled I Platform Default
Direct Cache Access	: \bigcirc disabled \bigcirc enabled \bigcirc auto \odot Platform Default
Processor C State	: Odisabled Oenabled I Platform Default
Processor C1E	: Odisabled Oenabled I Platform Default
Processor C3 Report	: Platform Default
Processor C6 Report	: Odisabled Oenabled OPlatform Default
Processor C7 Report	Platform Default
Processor CMCI	: O enabled O disabled O Platform Default
CPU Performance	: Platform Default
Max Variable MTRR Setting	: 🔵 auto-max 🔵 8 💿 Platform Default
Local X2 APIC	: 🔿 xapic 🔿 x2apic 🔿 auto 💿 Platform Default
Power Technology	: Platform Default
Energy Performance	Platform Default
Frequency Floor Override	: Odisabled Oenabled Platform Default
P-STATE Coordination	: O hw-all O sw-all O sw-any Platform Default

-

(DIGG D

Single Point of Management - LAN Connectivity

.


LAN / LAN Cloud / Fabric A / Port Channels

Port	Channels	

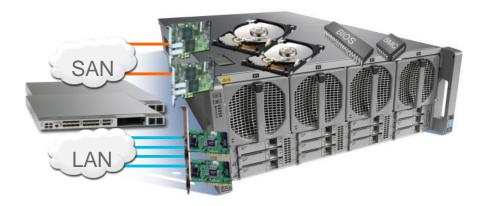
+ - Ty Advanced Filter	수 Export 🖷 Print			
Name	Fabric ID	If Type	If Role	Transport
Port-Channel 1	A	Aggregation	Network	Ether
Eth Interface 1/15	A	Physical	Network	Ether
Eth Interface 1/16	A	Physical	Network	Ether

Single Point of Management - SAN Connectivity

Single Point of Management - Central Administration

	All	All / Faults, Events and Au	udit Lo	og							
	▼ All	Faults Events A	udit L	ogs Syslog Co	re Files TechSupp	ort Files	Settings				
	 Faults, Events and Audit Log 	Filters	\otimes	Trilter Ty Advance	d Filter 🔶 Export	Print	Hide Fault Details	5			\$
	Faults	Severity	7.	Severity	Code	ID		Affected object	Cause	Last Transition	Description
Servers	Events	Show All		0	F0440	5578	7	sys/chassis-5/slot	unexpected-numbe	2017-01-30T23:43:3	Chassis discovery p
品	Audit Logs	Critical	- 1	0	F0461	57105	5	sys/chassis-5/blad	log-capacity	2017-01-30T23:43:4	
LAN	Syslog	V Major	- 1	0	F0461	57073		sys/chassis-5/blad	log-capacity	2017-01-30T23:43:4	
	Core Files	Minor		0	F0461	57072		sys/chassis-5/blad		2017-01-30T23:43:4	
	TechSupport Files	V Warning	- 1	0					log-capacity		
SAN	Settings	Info Condition	- 1		F0461	56718		sys/chassis-5/blad	log-capacity	2017-01-30T23:43:4	
	 User Management 	Cleared	- 1	0	F0461	56717		sys/chassis-5/blad	log-capacity	2017-01-30T23:43:4	
VM	Authentication	O Soaking	-1	0	F0440	55738		sys/chassis-5/slot		2017-01-30T23:43:3	
	▶ LDAP	Suppressed		0	F0440	55782	2	sys/chassis-5/slot	unexpected-numbe	2017-01-30T23:43:3	Chassis discovery p
	► RADIUS		_	0	F0440	55777	7	sys/chassis-5/slot	unexpected-numbe	2017-01-30T23:43:3	Chassis discovery p
Storage	TACACS+	Category All	73	Total: 34 Selected: 1				S 1 2 5)		10 25 50 All 🔹
	 User Services 	✓ Generic									
Chassis	Locales	✓ Server									
	Locally Authenticated Users	✓ Network		Details							
20	Remotely Authenticated Users	Operations Sysdebug		Summary			Properties				[
Admin	Roles	✓ Sysdebug ✓ FSM		Severity : 🚺) Info		Affected object				
	 Key Management 	Equipment		Last Transition: 2	017-01-30T23:43:32Z	:	Description	: Chassis discovery configured	policy conflict: Link IO	M 5/2/4 to peer port B:	V/A/1/28 not
	KeyRing default	✓ Management		Actions			ID	55787	Type	connect	livity
	listel										
Cis	coll <i>VCi</i>				#CLUS		TECINI-254	3 © 2018 Cisc	o and/or its affiliates.	All rights reserved. C	Disco Public 115

Stateless Computing – Advantage #2 Service Profiles



Stateless Computing – Advantage #2 Service Profiles

NIC MACs HBA WWNs Server UUID VLAN VLAN tagging FC fabrics FC boot parameters FC zoning Number of vNICs Boot order PXE settings IPMI Settings Number of vHBAs QoS Call home

Org & sub orgs Server pools Statistic thresholds BIOS scrub actions Disk scrub actions BIOS firmware Adapter firmware BMC firmware RAID settings Advanced NIC settings Serial over LAN settings BIOS settings Netflow

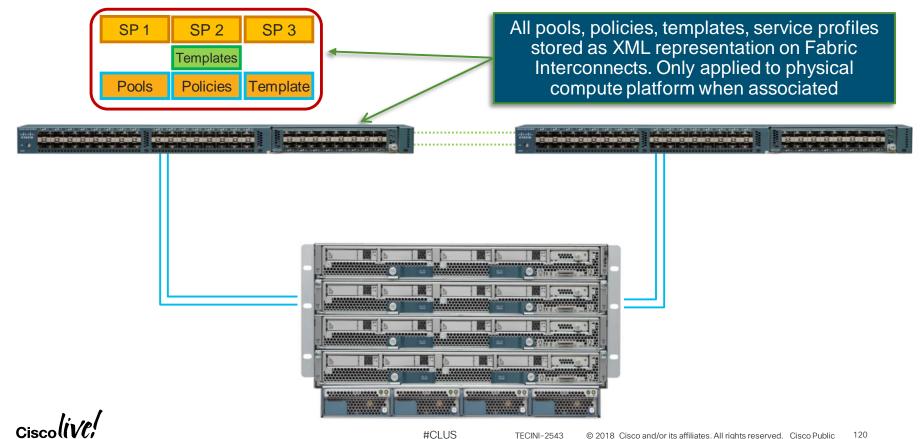
Stateless Computing – Advantage #2 Service Profiles

NIC MACs HBA WWNs Server UUID VLAN VLAN tagging FC fabrics FC boot parameters FC zoning Number of vNICs Boot order PXE settings IPMI Settings Number of vHBAs QoS Call home

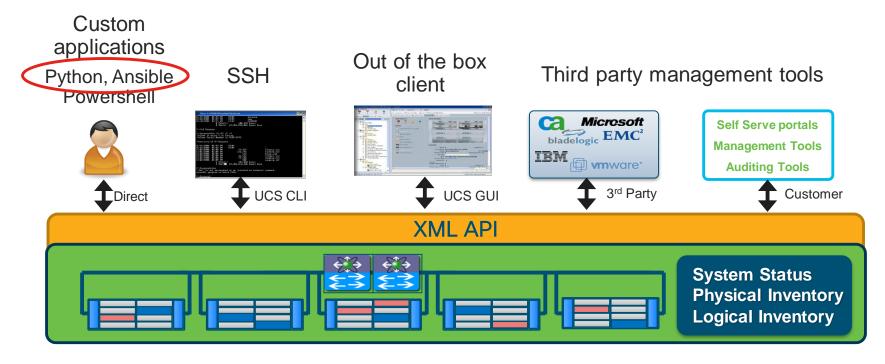
Org & sub orgs Server pools Statistic thresholds BIOS scrub actions Disk scrub actions BIOS firmware Adapter firmware BMC firmware RAID settings Advanced NIC settings Serial over LAN settings BIOS settings Netflow

Stateless Computing – Advantage #2

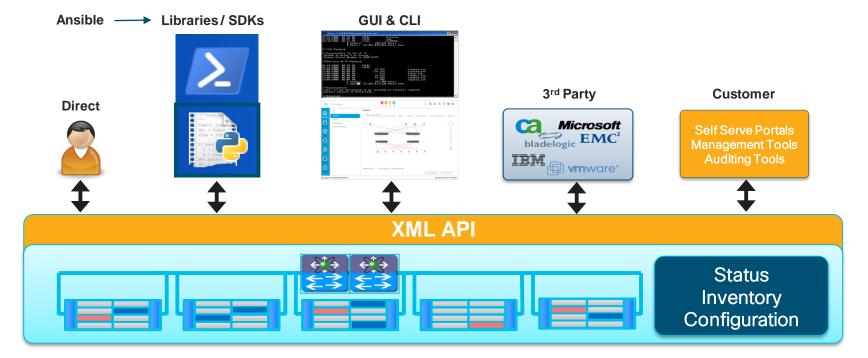
Service Profile Templates - Logical Building Blocks


1		🗋 lindastastasimiastastas 🛛 astastastastastastastastastasta
Service Profile	Service Profile	Service Profile
MAC: 00:25:B5:01:00:05	MAC : 00:25:85:01:00:06	MAC: 00:25:85:01:00:07
WWN: 20:01:00:25:B5:01:00:05	WWN: 20:01:00:25:B5:01:00:06	WWN: 20:01:00:25:B5:01:00:07
Firmware 2.2 Boot:SAN	Firmware 2.2 Boot:SAN	Firmware 2.2 Boot:SAN
Service Profile	Service Profile	Service Profile
MAC : 00:25:85:01:00:05	MAC : 00:25:B5:01:00:06	MAC: 00:25:B5:01:00:07
WWN: 20:01:00:25:B5:01:00:05	WWN: 20:01:00:25:B5:01:00:06	WWN: 20:01:00:25:B5:01:00:07
Firmware 2.1 Boot:SAN	Firmware 2.1 Boot:SAN	Firmware 2.1 Boot:SAN
	Templates - Service Profile	
	MAC : Derived WWN: Derived	
	Firmware 2.2 Boot:SAN	
Pools	Policies	Templates
UUID	Boot Devices/Order	vNICs
MAC	Host F/W	vHBAs

Ciscolive,


Stateless Computing – Advantage #2

Hardware/Software Abstraction

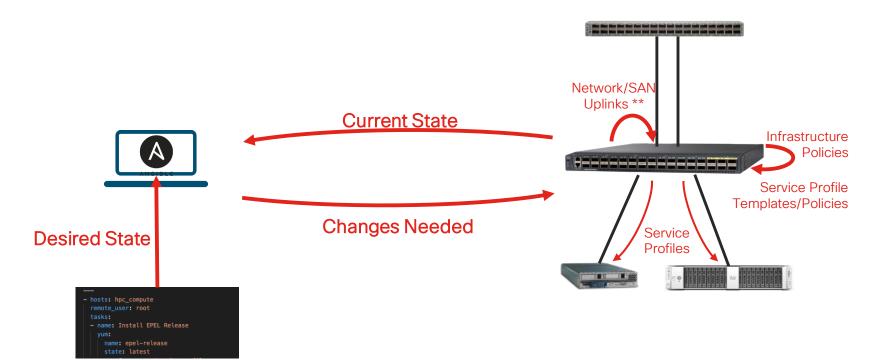

Programmability – Advantage #3

XML API and Other Hidden Gems - Programmatic interface

Programmability – Advantage #3

Infrastructure as Code (IaC)

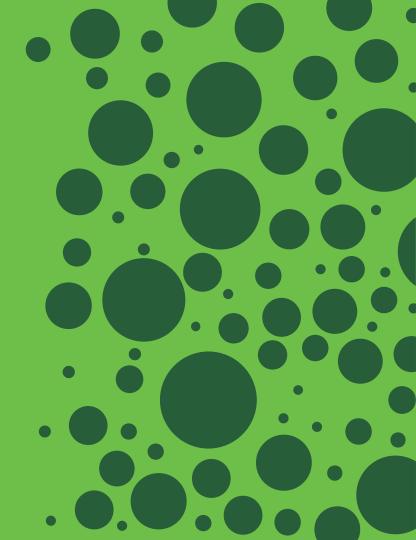
- Specific Configuration Management (CM) tools leverage the XML API, Python SDKs, etc. to support the target device
- You define the intent (end state) in plain text files that CM tools consume
- Intent is version controlled with standard SW dev tools, maybe even tested (e.g. Git, Jenkins)


<pre>#!/usr/bin/env p</pre>	vthon	<pre>- hosts: hpc_compute</pre>
		remote_user: root
from ucsmsdk.ucs	handle impc	tasks:
		– name: Install EPEL Release
handle = UcsHand	le("10.10.1	yum:
<pre>handle.login()</pre>		name: epel-release
hladas and shase	ic - bondle	state: latest
<pre>blades_and_chass print blades_and</pre>		– name: Copy core /etc/hosts file
print blades_and		сору:
p		<pre>src: /srv/etc/hosts</pre>
for blade in bla	des_and_cha	dest: /etc/hosts
print blade.	dn	owner: root
		group: root
for chassis in b		mode: 0644
print chassis.dn		notify:
blade_and_chassi	c - handle	 restart custom service
print blade_and_		handlers:
print blade_and_		– name: restart custom service
		service:
		name: custom
		state: restarted

Programmability – Advantage #3 Infrastructure as Code (IaC)

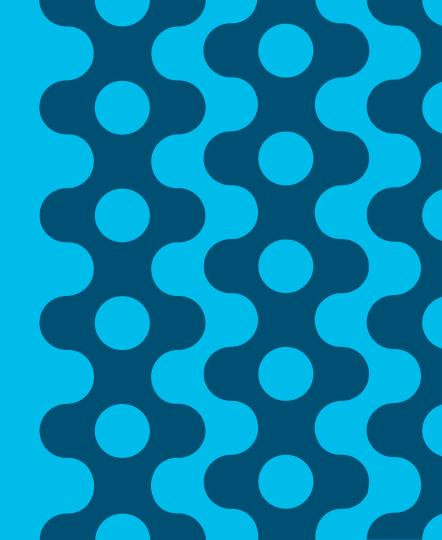
124

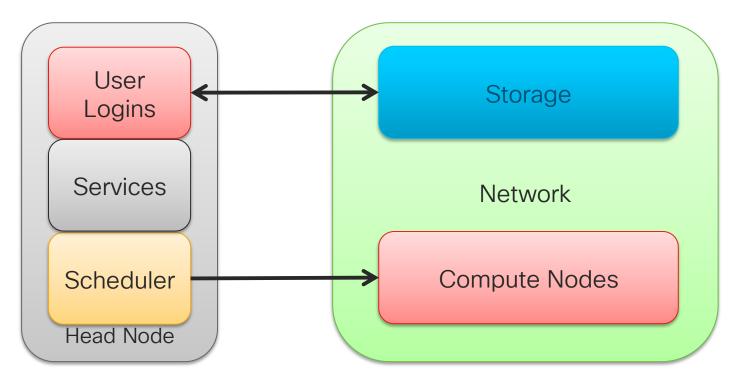
#CLUS


Ciscolive!

** Future capability

TECINI-2543 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public


Questionable pause

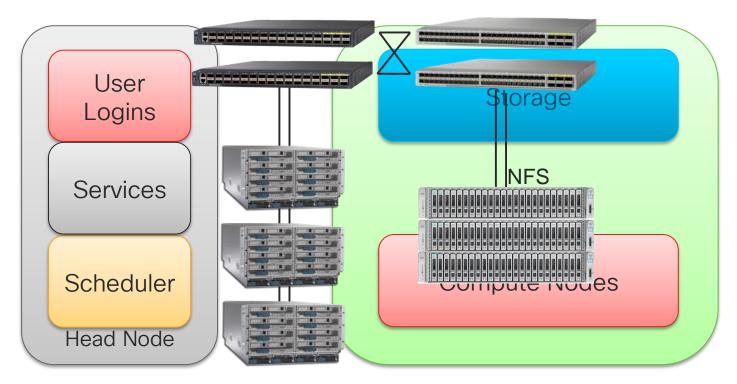


UCS Designs

General Architecture Review

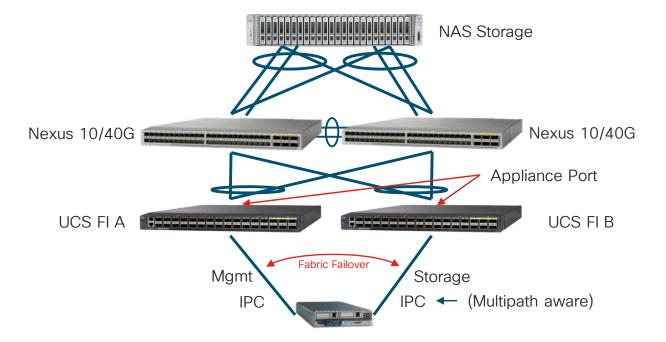
"Small" Research Computing Environments

Workload Types


- Compute-bound computations
 - Statistical modeling simulations
 - Small inputs, Large Outputs
- Large scale independent tasks
 - · Parameter space search
 - Maybe some multi-core software
- · GPU enabled software

Resource Scale

- Compute
 - 1 UCS domain (<160 nodes)
 - 10GE server
- Networking
 - HPC Local to FI
- Storage
 - Low-modest IOPs
 - GB or smaller streaming r/w



Novel approach to small environments

Implementation Details

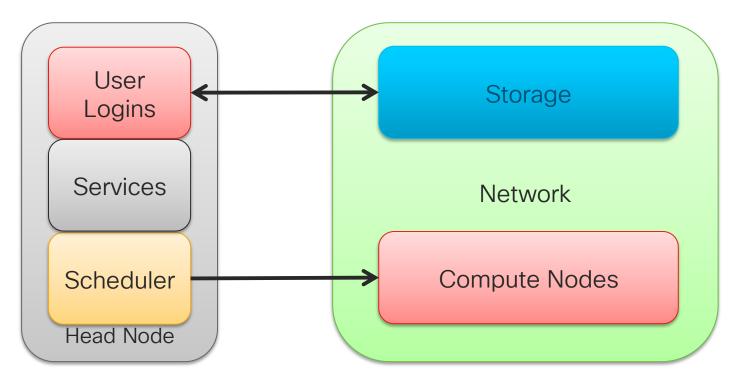
Ciscolive,

"Medium" Research Computing Environments

Workload Type

- Multi-node Applications
 - · MPI low comm/calc ratio
- TB scale data sets
 - Streaming reads
 - Many nodes, concurrent access
- Balance of I/O and Compute
 - · CPU or GPU heavy processing

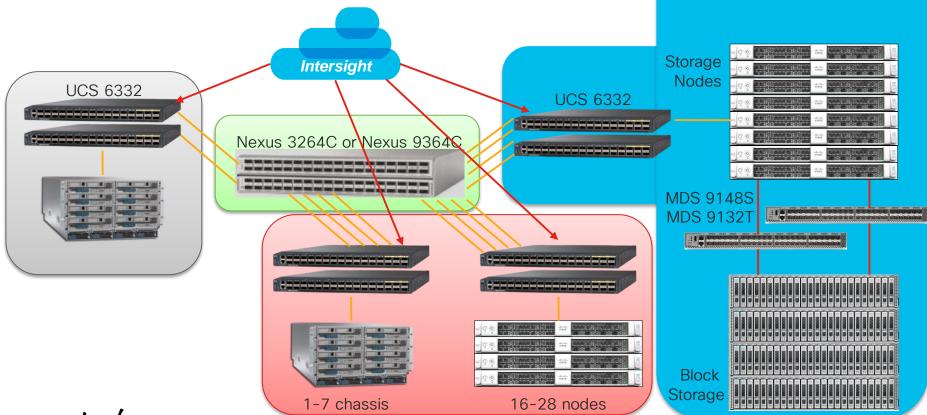
Resource Scale


- Compute
 - Multiple Domains
 - 10GE or 40GE
- Networking
 - Multi-tier UCS/Nexus
- Storage

#CLUS

Parallel Filesystems

"Medium" Research Computing Environments



BRKINI-2534 Intersight

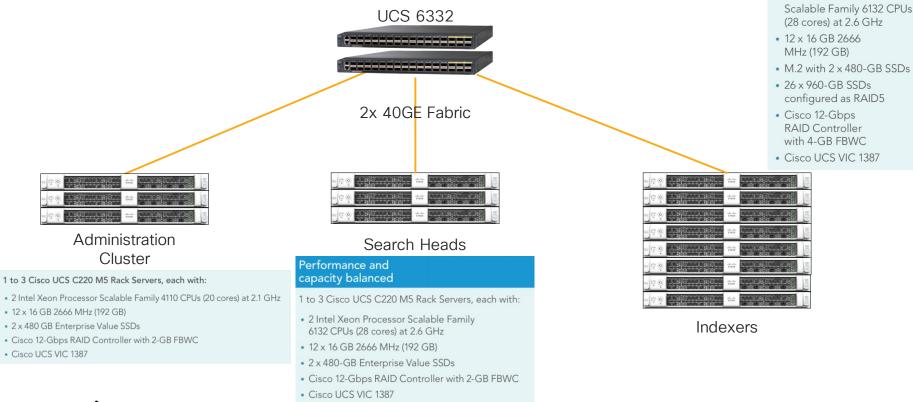
BRKINI-2205 UCS Central

UCS building standard HPC designs

Ciscolive,

Cisco Validated Designs for Big Data

Cloudera


SAP

Splunk

Ciscolive!

Splunk Reference Architecture on UCS

Ciscolive

#CLUS

8 Cisco UCS C240 M5 Rack

Servers¹, each with: • 2 Intel Xeon Processor

UCS References Architectures for Custom Needs

Bundle	Blade	High performance	Performance	Capacity	High capacity
Server SKU		UCS-SP-C220M5-A2	UCS-SP-C240M5-A2	UCS-SPC240M5L-S1	UCSS-SP-S3260-BV
Supported platform	Scale out databases such as Elasticsearch, MongoDB, Ora Greenplum DB, MemSQL an	acle NoSQL Database, Pivotal	Scale out systems such as Cloud Transwarp, Pivotal Greenplum DB Splunk Enterprise, Vertica, Elastic	, Pivotal HD, SAS Analytics,	Cloudera, Hortonworks, MapR, Splunk Enterprise, MapR-XD, Cisco VSOM, Milestone, Genetec, SDS like Scality, IBM Cloud Object Storage and SwiftStack
Servers	8 x Cisco UCS B200 M5 Blade Servers	8 x Cisco UCS C220 M5 Rack Servers	16 x Cisco UCS C240 M5 Rack Servers with Small-Form- Factor (SFF) drives	16 x Cisco UCS C240 M5 Rack Servers with Large- Form-Factor (LFF) drives	8 x Cisco UCS S3260 Storage Server, each server node with
CPU	2 x Intel Xeon Processor Scalable Family 6132 (2 x 14 cores and 2.6 GHz)	2 Intel Xeon Processor Scalable Family 6132 (2 x 14 cores and 2.6 GHz)	2 Intel Xeon Processor Scalable Family 6132 (2 x 14 cores and 2.6 GHz)	2 Intel Xeon Processor Scalable Family 4110 (2 x 8 cores and 2.1 GHz)	2 Intel Xeon processor E5-
Memory	12 x 16 GB 2666 MHz (192 GB)	12 x 16 GB 2666 MHz (192 GB)	12 x 16 GB 2666 MHz (192 GB)	12 x 16 GB 2666 MHz (192 GB)	8 x 32 GB 2400MHz (256 GB)
Boot	M.2 with 2 x 480-GB SSDs	M.2 with 2 x 480-GB SSDs	M.2 with 2 x 480-GB SSDs	M.2 with 2 x 480-GB SSDs	2 x 480-GB Enterprise Value Boot SSDs
Storage	2 x Cisco 2.5-inch 7.7-TB HGST SN200 NVMe High-Performance Enterprise Value	8 drives of 1.6-TB Enterprise Value SATA SSD SFFs	26 drives of 1.8-TB 10,000- rpm SFF SAS HDDs or 12 x 1.6-TB Enterprise Value SATA SSDs	12 x 8-TB 7200-rpm LFF SAS drives and 2 x 1.6 -TB Enterprise Value SATA SSDs	24 x 6-TB 7200-rpm LFF SAS drives
VIC	40-Gbps Cisco UCS VIC 1340 mLOM	40-Gbps Cisco UCS VIC 1387	40-Gbps Cisco UCS VIC 1387	40-Gbps Cisco UCS VIC 1387	40-Gbps Cisco UCS VIC 1387
Storage controller	Cisco FlexStorage PCle SSD passthrough module with Hard-Disk-Drive (HDD) cage	Cisco 12-Gbps SAS Modular RAID Controller with 2-GB Flash-Based Write Cache (FBWC) or Cisco 12-Gbps Modular SAS Host Bus Adapter (HBA)	Cisco 12-Gbps SAS Modular RAID Controller with 4-GB FBWC or Cisco 12-Gbps Modular SAS HBA	Cisco 12-Gbps SAS Modular RAID Controller with 2-GB FBWC or Cisco 12-Gbps Modular SAS HBA	Cisco 12-Gbps SAS Modular RAID Controller with 4-GB FBWC
Network connectivity	Cisco UCS 6332 Fabric Interconnect	Cisco UCS 6332 Fabric Interconnect	Cisco UCS 6332 Fabric Interconnect	Cisco UCS 6332 Fabric Interconnect	Cisco UCS 6332 Fabric Interconnect

Ciscolive

#CLUS

TECINI-2543 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 136

"Large" Research Computing Environments

Workload Types

- $\boldsymbol{\cdot}$ Any and all of the above
 - At scales beyond normal DC design
- Tightly coupled analyses
 - Communication heavy
 - · Large multi-node applications
 - Messages are small (4-16K)
- Large data sets feeding GPUs
- GPU-to-GPU Direct RDMA Copy

Resource Scale

- Compute
 - 100s to 1000s
- Network
 - · Low latency, large bandwidth
 - Separate network infrastructure
- Storage

- Dedicated parallel FS appliance(s)
- Multiple clusters of storage servers

00G/40G Line Rate Performance (>250B)

Nexus 100G Portfolio

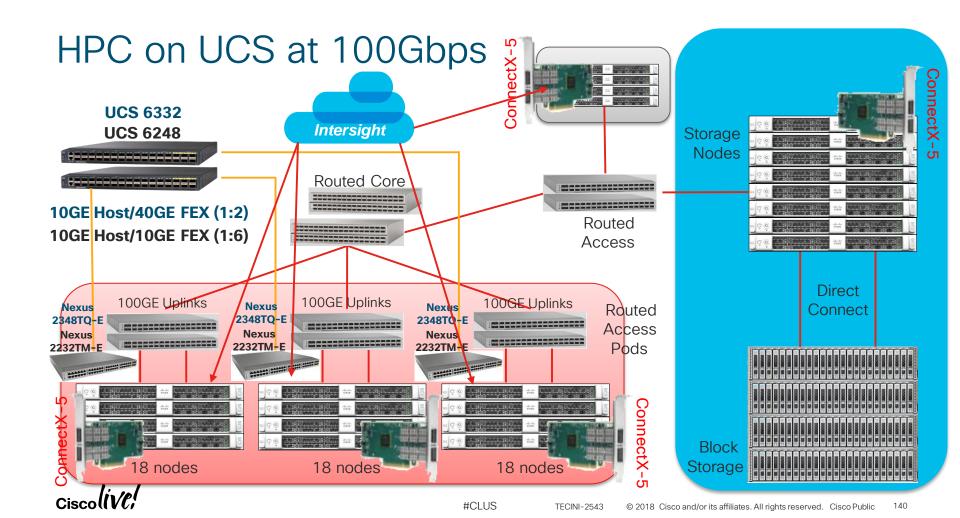
Nexus 100G Portfolio NX-OS Based Switches

32p 100G QSFP Nexus 3232C 3.2Tbps switching with single chip16MB Shared Buffer, 450ns switching latency

64p 100G QSFP28 Nexus 3264C

-	-	1000	100.000	10000	10000	10000	Property of	Personal Person	Property of	1000	1000	-	1000	Contrast of	1000	
 	111111	States:					in the second se	*******	******		*******					

36p 100G QSFP Nexus 9336C-FX2


64p 40/100G QSFP Nexus 9364C

#CLUS

6.4Tbps switching with single chip42MB Shared Buffer, 450ns switching latency

3.6 Tbps switching with single chip
40MB Shared Buffer
100G Line Rate MACSEC, SSX Telemetry
6.4Tbps switching with single chip
40MB Shared Buffer
100G Line Rate MACSEC, SSX Telemetry

Ciscolive!

UCS Drills into Oil and Gas

10x pair of Racks = 8 SU

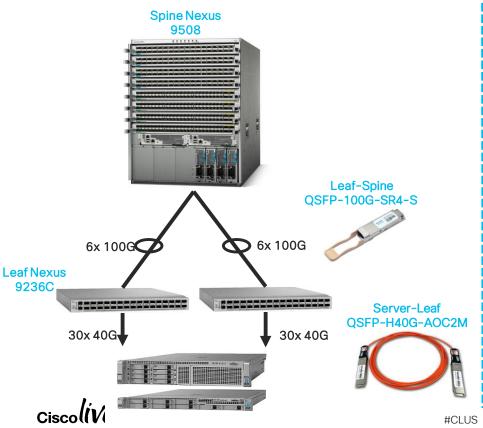
A pair of Rack Computing: 72 ports 100 or 40G 12 ports 100G uplinks 60 ports 40G downlinks Oversubscription 2:1

16 UCS C240-M5 servers Total of **23.1 Tera FLOPs** (CPUs)

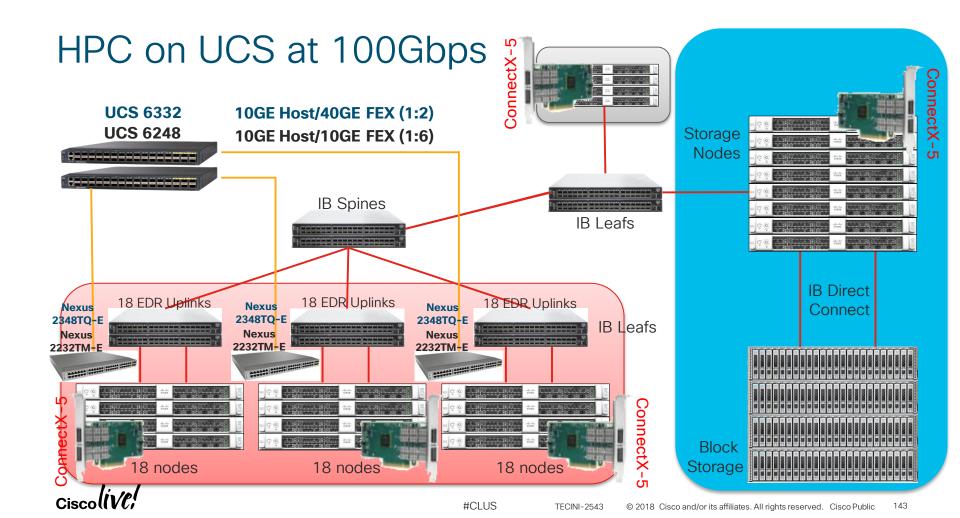
8 Magma Chassis 64x NVIDIA P100 or 595.2 Tera FLOPs (GPUs)

14 UCS C220-M5 servers

Total 629.9 Tera FLOPs


14x UCS C220-M5 4x UCS C240-M5 2x Magma EB3600-AB 4x UCS C240-M5 2x Magma EB3600-AB 2x Nexus 9236C OI 1x Cat 2960X-48T 4x UCS C240-M5 2x Magma EB3600-AB 4x UCS C240-M5 2x Magma EB3600-AB

TECINI-2543



Oil and Gas Network Topology

Spine ports 32-ports 100G module Leaf ports 6 100G uplink ports (600G) 30 40G downlink ports (1200G) Oversubscription 2:1 Fabric Scalability 3 Nexus 9508 Spine supports up to 256 Leafs 3 Nexus 9516 Spine supports up to 512 Leafs

It's been a long time since I asked for questions

UCS Solution Summary

- UCS has a reliable, low risk portfolio
- UCS offers a proven ease-of-use operational benefits
- UCS enables automation of hardware provisioning that can integrate with established OS configuration management tools
- UCS provides competitive options for small and mid-size research computing environments
- UCS extends competitive computing solutions through support of 3rd party components for advanced communication needs

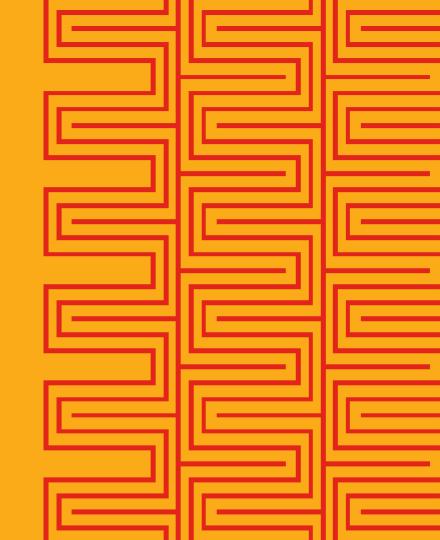
UCS Sweet Spots

• Better TCO for Enterprises with sustained usage (>30%)

• Leverage HPC environment as part of DR plan

• No dedicated HPC specialists to run infrastructure

• Need platform with automation to integrate into your existing toolsets (Ansible, Puppet, etc)


Agenda

- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration with Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

Demo

Agenda

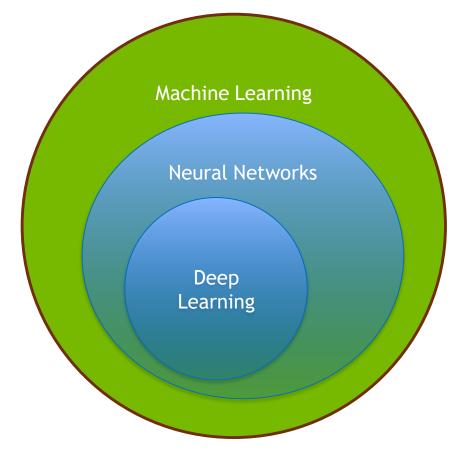
- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration with Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

Deep Learning with GPUs

CiscoLive, June, 2018

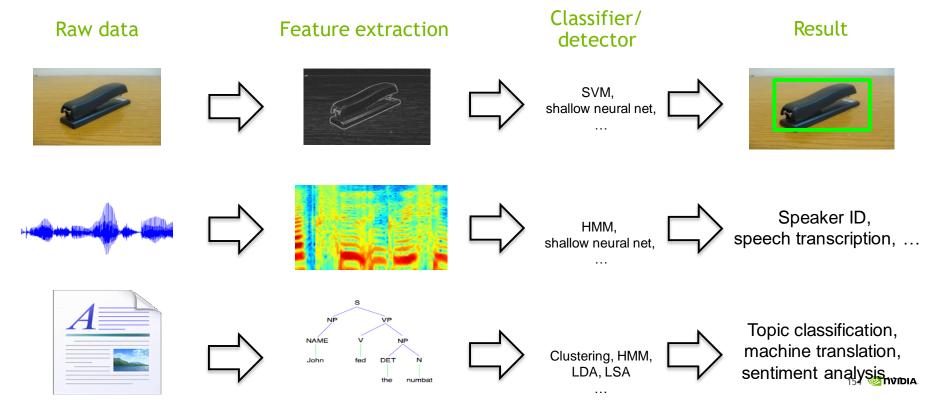
AGENDA

What is Deep Learning?

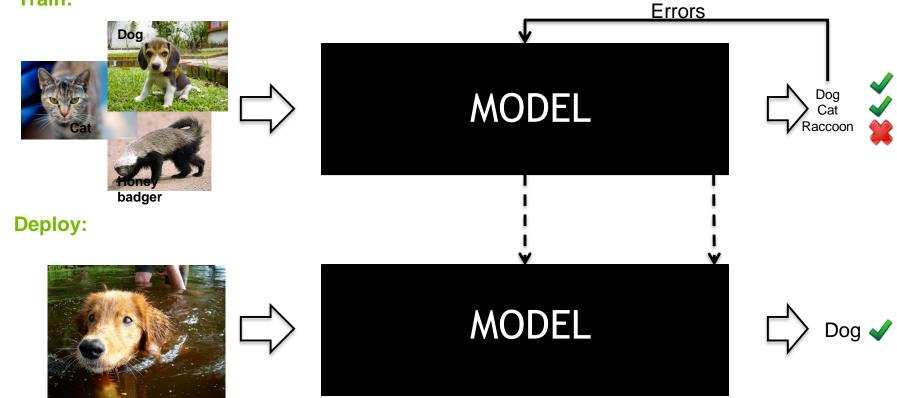

Example Use Cases (Healthcare emphasis)

GPUs and DL

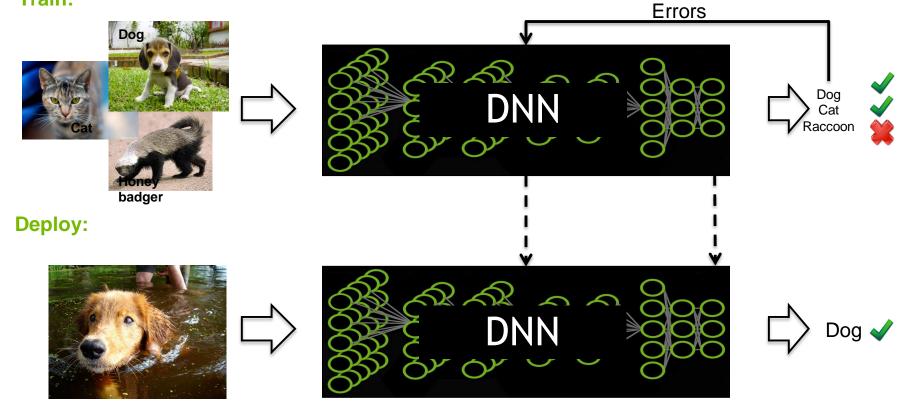
DL in practice


DIGITS Demo (time permitting)

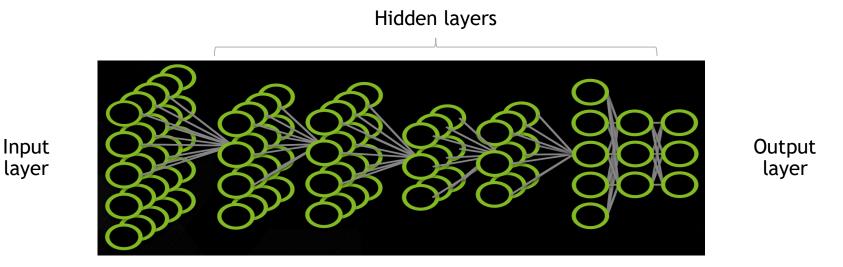
What is Deep Learning?


Traditional machine perception

Hand crafted feature extractors

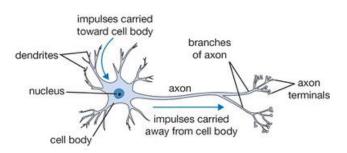

Machine learning approach

Train:

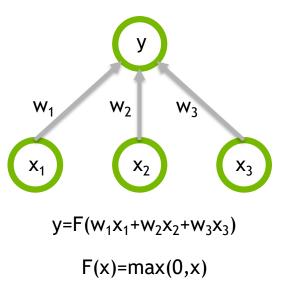

Deep learning approach

Train:

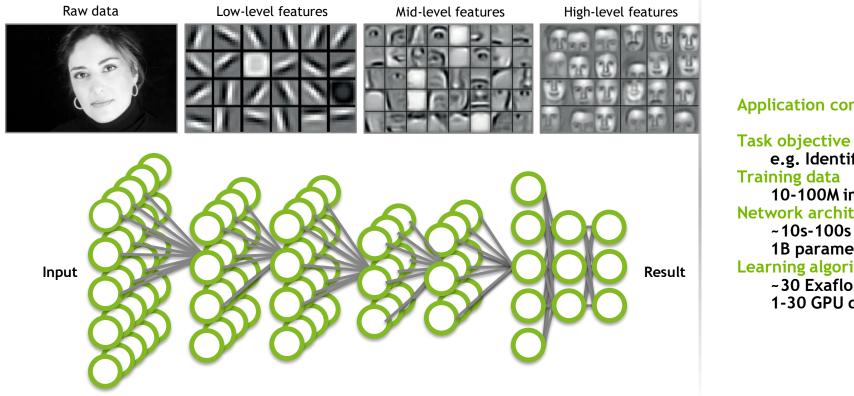
Artificial neural network


A collection of simple, trainable mathematical units that collectively learn complex functions

Given sufficient training data an artificial neural network can approximate very complex functions mapping raw data to output decisions

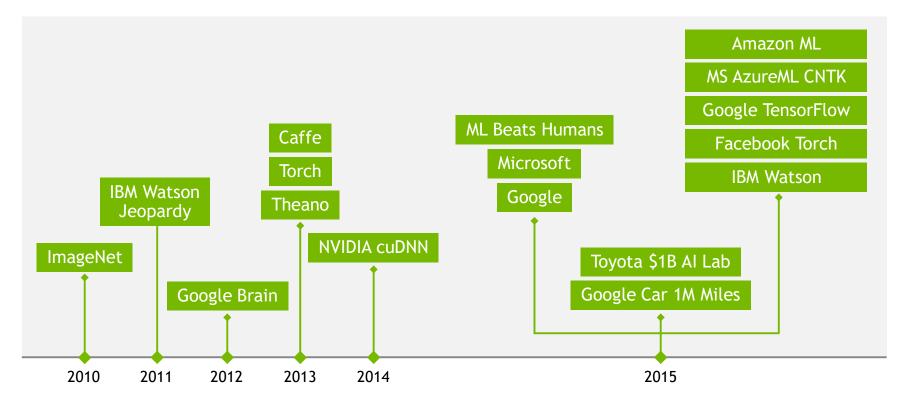

Artificial neurons

Biological neuron



From Stanford cs231n lecture notes

Deep neural network (DNN)


Application components:

e.g. Identify face **Training data** 10-100M images **Network architecture** ~10s-100s of layers **1B** parameters Learning algorithm ~30 Exaflops 1-30 GPU days

Deep learning benefits

- Robust
 - No need to design the features ahead of time features are automatically learned to be optimal for the task at hand
 - Robustness to natural variations in the data is automatically learned
- Generalizable
 - The same neural net approach can be used for many different applications and data types
- Scalable
 - Performance improves with more data, method is massively parallelizable

The AI race is on

AlphaGo

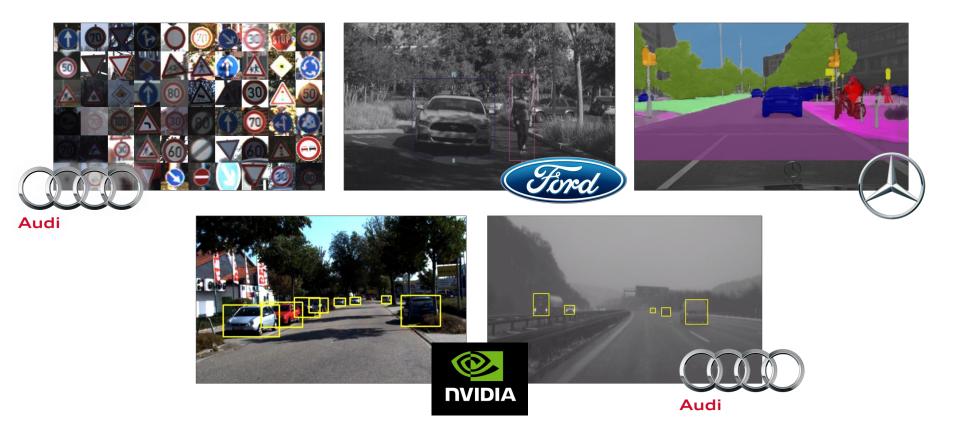
First Computer Program to Beat a Human Go Professional

Training DNNs: 3 weeks, 340 million training steps on 50 GPUs

Play: Asynchronous multi-threaded search

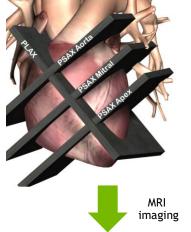
Simulations on CPUs, policy and value DNNs in parallel on GPUs

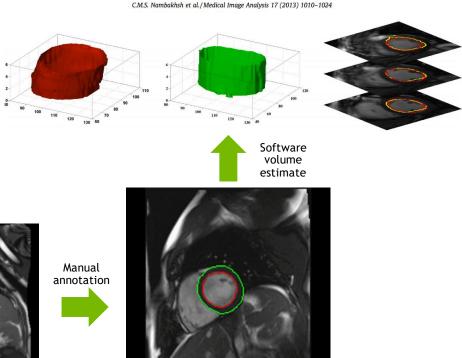
Single machine: 40 search threads, 48 CPUs, and 8 GPUs

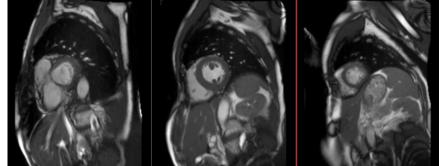

Distributed version: 40 search threads, 1202 CPUs and 176 GPUs

Outcome: Beat both European and World Go champions in best of 5 matches

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html http://deepmind.com/alpha-go.html




Deep Learning for Autonomous vehicles



Automating Cardiac MRI analysis

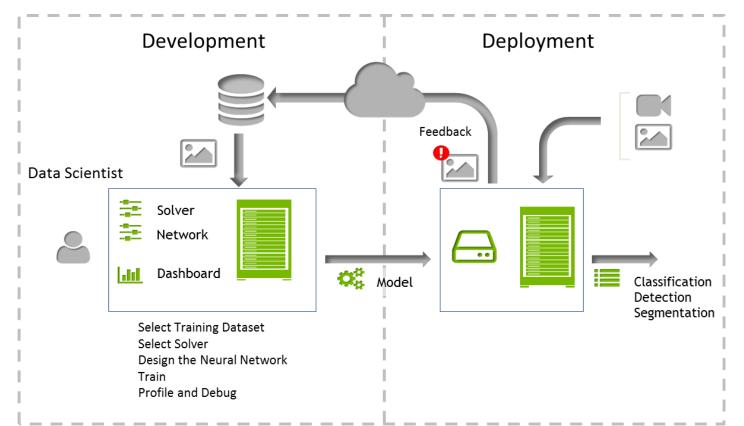
DL performance matches expert cardiologist at computing ejection fraction - a key indicator of heart disease

Safeguarding patients' health through enhanced preventative medicine

'Deep Patient' analyzes electronic health records to predict 78 diseases, up to one year prior to onset

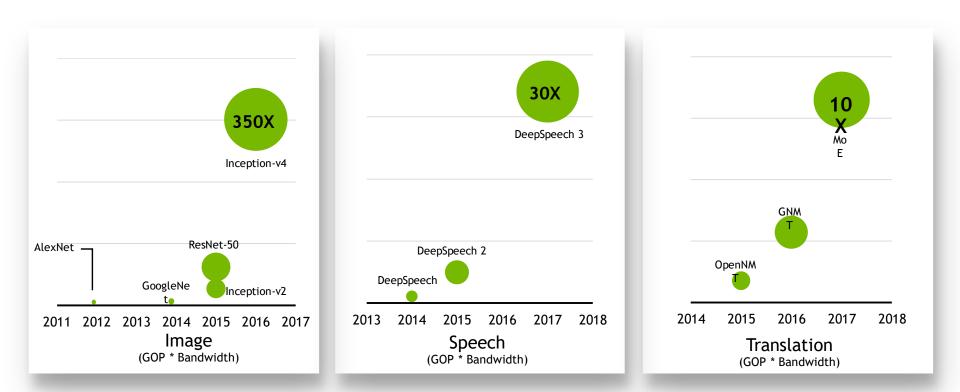
Neural network trained on 100,000's records using NVIDIA® Tesla® K80 GPU and CUDA® programming model.

"For most diseases, prevention is easier tha reversal. Deep Patient could have a huge impact on people's health."


-Joel T. Dudley, Assistant Professor of Genetics, Genomic Sciences Director of Biomedical Informatics

GPUs and DL

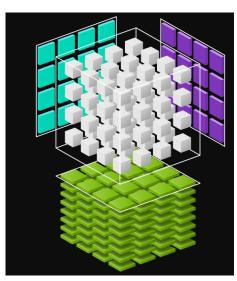
USE MORE PROCESSORS TO GO FASTER


Deep learning development cycle

TESLA PLATFORM FOR AI

NEURAL NETWORK COMPLEXITY IS EXPLODING

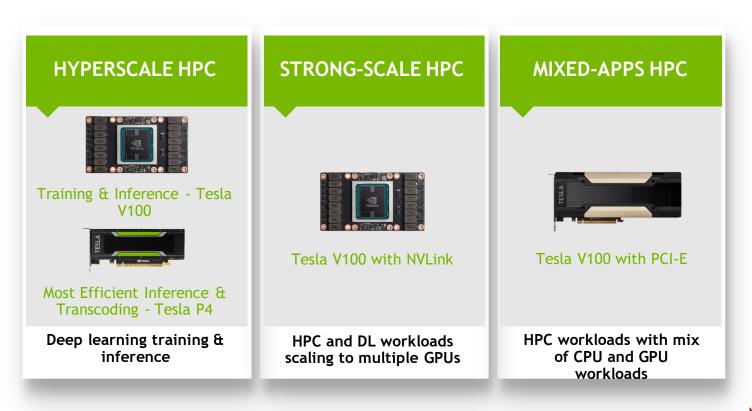
Bigger and More Compute Intensive


PLATFORM BUILT FOR AI

Delivering 125 TFLOPS of DL Performance with Volta

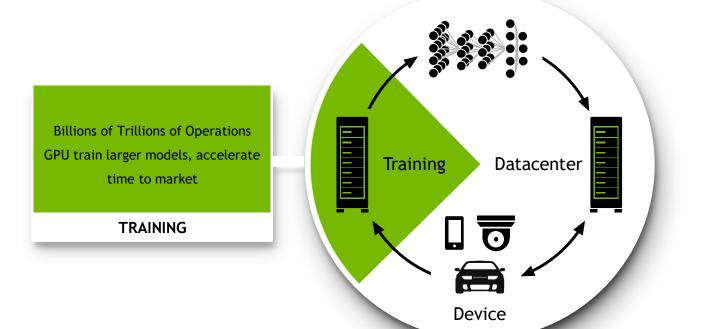
MATRIX DATA OPTIMIZATION: Dense Matrix of Tensor Compute TENSOR-OP CONVERSION: FP32 to Tensor Op Data for Frameworks

VOLTA-OPTIMIZED cuDNN



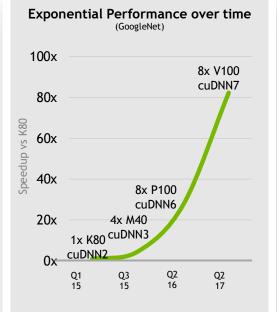
VOLTA TENSOR CORE 4x4 matrix processing array D[FP32] = A[FP16] * B[FP16] + C[FP32] Optimized For Deep Learning

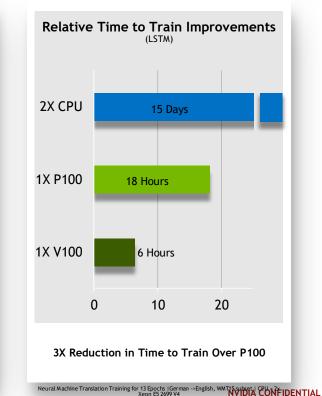
ALL MAJOR FRAMEWORKS


END-TO-END PRODUCT FAMILY

TESLA PRODUCTS RECOMMENDATION

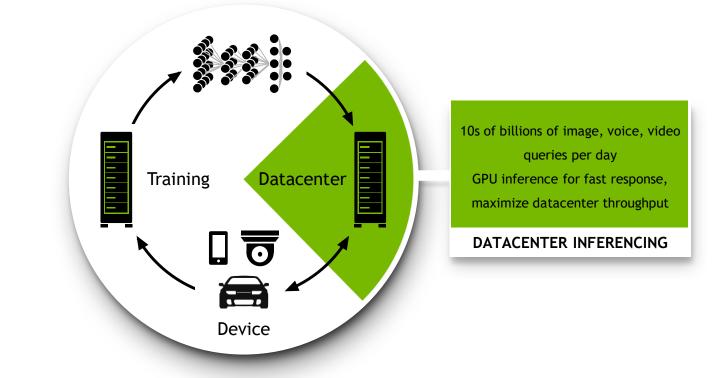
PRODUCT	V100	P4
	V100 for PCleV100 for NVLinkV100 for Hyperscale	P4 for PCle
Target Use Cases	 Universal GPU for accelerating HPC and AI Workloads Available in 3 form factors 	 Low power, low profile optimized for scale out DL inference deployment Most efficient inference and video processing
Form Factors	 Tesla V100 for NVLink: Ultimate performance for DL Tesla V100 for PCIe: Highest versatility for all workloads Tesla V100 for Hyperscale: Maximum efficiency for scale-out hyperscale data centers 	• PCIe
Best Configs.	 PCIe: 2-4 GPU/node NVLink: 8 way Hybrid Cube Mesh Hyperscale: 2-4 GPU/node 	• 1-2 GPU/node
1 st Server Ship	Available Now	Available Now


GPU DEEP LEARNING IS A NEW COMPUTING MODEL


REVOLUTIONARY AI PERFORMANCE

3X Faster DL Training Performance

Over 80X DL Training Performance in 3 Years



GoogleNet Training Performance on versions of cuDNN Vs 1x K80 cuDNN2

TESLA V100

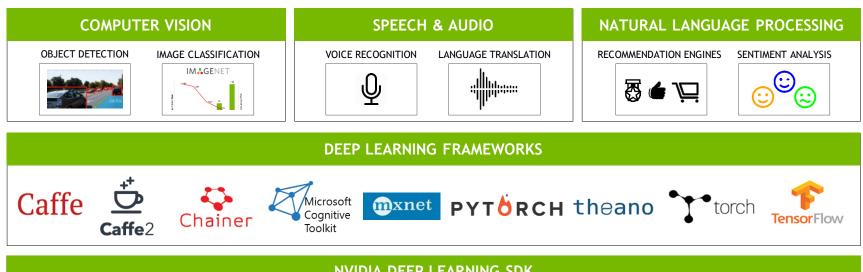
	For NVLink Servers	For PCle Servers
Core	5120 CUDA cores, 640 Tensor cores	5120 CUDA cores, 640 Tensor cores
Compute	7.8 TF DP \cdot 15.7 TF SP \cdot 125 TF DL	7 TF DP \cdot 14 TF SP \cdot 112 TF DL
Memory	HBM2: 900 GB/s · 16 GB	HBM2: 900 GB/s · 16 GB
Interconnect	NVLink (up to 300 GB/s) + PCIe Gen3 (up to 32 GB/s)	PCle Gen3 (up to 32 GB/s)
Power	300W	250W
Available	Now	Now

GPU DEEP LEARNING IS A NEW COMPUTING MODEL

TESLA P4

Maximum Efficiency for Scale-out Servers

8x Efficient vs CPU, 5x Efficient vs FPGA ■ CPU (E5-2690 v4) ■ FPGA ■ 1x V100 (FP16) ■ 1x P4 (INT8) 100 Images/Sec/Watt 75 50 25 0 AlexNet

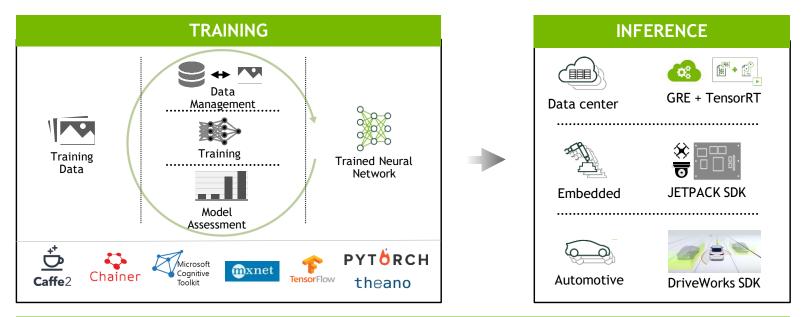

P4		
# of CUDA Cores	2560	
Peak Single Precision	5.5 Teraflops	
Peak INT8	22 TOPS	
Low Precision	4x 8-bit vector dot product with 32-bit accumulate	
Video Engines	1x decode engine, 2x encode engine	
GDDR5 Memory	8 GB @ 192 GB/s	
Power	50W & 75 W	

AlexNet, batch size = 128, CPU: Intel E5-2690v4 using Intel MKL 2017, FPGA is Arria10-115 P4 board power: 64W, V100 board power: 218W, CPU power: 196W includes CPU and RAM power, FPGA performance/watt taken from Intel whitepaper titled "An OpenCLTM Deep Learning Accelerator on Arria 10"

DL in practice (DL SDK)

POWERING THE DEEP LEARNING ECOSYSTEM

NVIDIA SDK accelerates every major framework



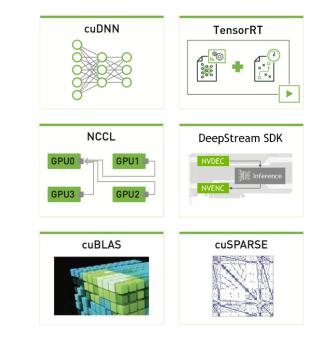


developer.nvidia.com/deep-learning-software

NVIDIA DEEP LEARNING SOFTWARE PLATFORM

developer.nvidia.com/deep-learning-software

NVIDIA DEEP LEARNING SDK


High performance GPU-acceleration for deep learning

Powerful tools and libraries for designing and deploying GPU-accelerated deep learning applications

High performance building blocks for training and deploying deep neural networks on NVIDIA GPUs

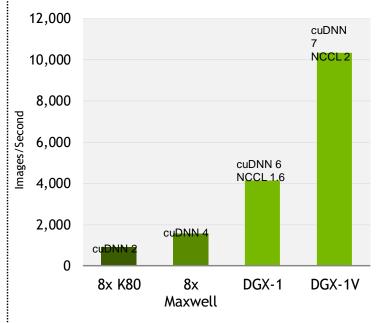
Industry vetted deep learning algorithms and linear algebra subroutines for developing novel deep neural networks

Multi-GPU and multi-node scaling that accelerates training on up to eight GPU

"We are amazed by the steady stream of improvements made to the NVIDIA Deep Learning SDK and the speedups that they deliver."

NVIDIA cuDNN

Deep Learning Primitives


High performance building blocks for deep learning frameworks

Drop-in acceleration for widely used deep learning frameworks such as Caffe2, Microsoft Cognitive Toolkit, PyTorch, Tensorflow, Theano and others

Accelerates industry vetted deep learning algorithms, such as convolutions, LSTM RNNs, fully connected, and pooling layers

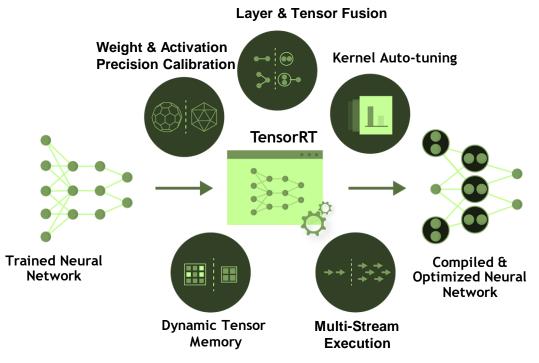
Fast deep learning training performance tuned for NVIDIA GPUs

Deep Learning Training Performance

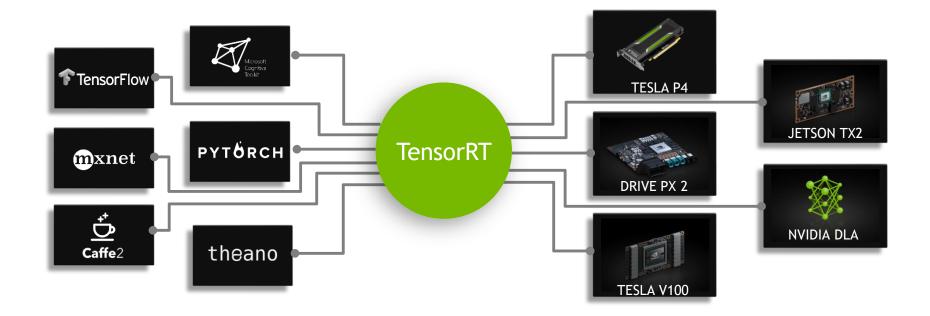
"NVIDIA has improved the speed of cuDNN with each release while extending the interface to more operations and devices at the same time."

NVIDIA TensorRT 3

Programmable Inference Accelerator

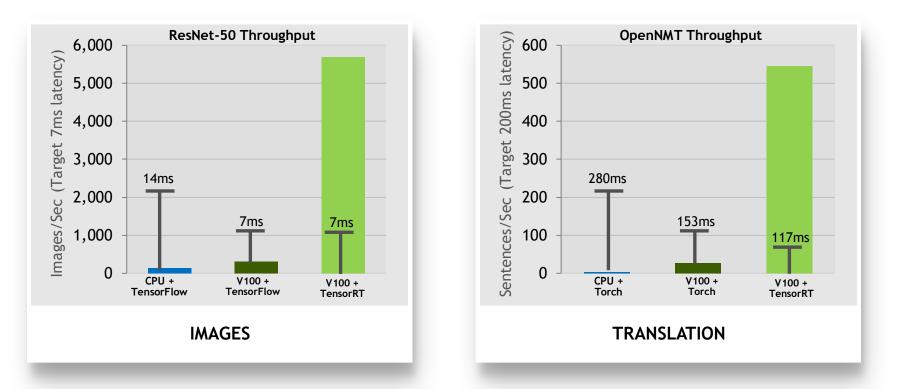

Compiler for Optimized Neural Networks

Weight & Activation Precision Calibration


Layer & Tensor Fusion

Kernel Auto-Tuning

Multi-Stream Execution



NVIDIA TENSORRT PROGRAMMABLE INFERENCE ACCELERATOR

NVIDIA TENSORRT 3

World's Fastest Inference Platform

NVIDIA Collective Communications Library (NCCL)

Multi-GPU and multi-node collective communication primitives

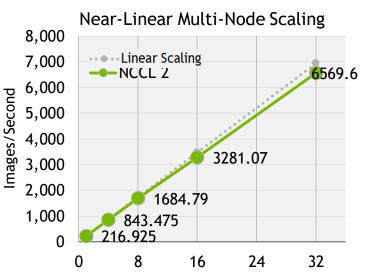
High-performance multi-GPU and multi-node collective communication primitives optimized for NVIDIA GPUs

Fast routines for multi-GPU multi-node acceleration that maximizes inter-GPU bandwidth utilization

Easy to integrate and MPI compatible. Uses automatic topology detection to scale HPC and deep learning applications over PCIe and NVLink

Accelerates leading deep learning frameworks such as Caffe2, Microsoft Cognitive Toolkit, MXNet, PyTorch and more

Multi-GPU: NVLink, PCIe


Multi-Node:

InfiniBand

verbs, IP Sockets

Automatic Topology Detection

NVIDIA DIGITS

Interactive Deep Learning GPU Training System

Interactive deep learning training application for engineers and data scientists

Simplify deep neural network training with an interactive interface to train and validate, and visualize results

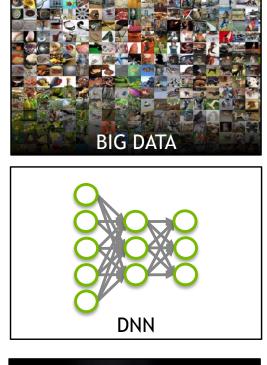
Built-in workflows for image classification, object detection and image segmentation

Improve model accuracy with pre-trained models from the DIGITS Model Store

Faster time to solution with multi-GPU acceleration

DIGITS Demo

TAKEAWAYS

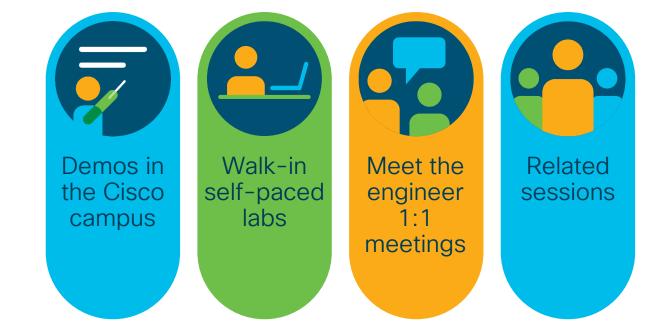

DL, GPUs and Big Data are combining to create the "Big Bang" in Artificial Intelligence

Deep Learning is solving problems that ML can't

NVIDIA provides both HW and SW building blocks to accelerate DL workflows: "You choose the DL framework, we'll make it run fast"

Tesla V100 for most HPC and AI/DL workflows

Tesla P4 for datacenter inferencing



Agenda

- Introduction
- Anatomy of Research Computing
- Demo and Hands-on Cluster Operations
- UCS as a Platform for Research Computing
- Hands-on Bonus: UCS Configuration with Ansible
- NVIDIA Deep Learning with GPUs
- Conclusion

Continue your education

Continue your education

- BRKINI-2012 UCS Operational Agility and Best Practices
 - Monday, Jun 11, 04:00 p.m. 05:30 p.m. | W311B
- BRKINI-2205 UCS Central Advanced Principles
 - Tuesday, Jun 12, 08:30 a.m. 10:00 a.m. | W108A
- BRKINI-2348 Demystify AI/ML with Cisco UCS
 - Thursday, Jun 14, 01:00 p.m. 02:30 p.m. | W208A
- DEVNET-1293 UCS Automation and Orchestration with Ansible
 - Monday, Jun 11, 10:30 a.m. 11:15 a.m. | WoS, DevNet Classroom 1
- DEVNET-2562 UCS PowerTool Deploy at Scale
 - Tuesday, Jun 12, 10:30 a.m. 11:15 a.m. | WoS, DevNet Classroom 1

Related sessions

Complete your online session evaluation

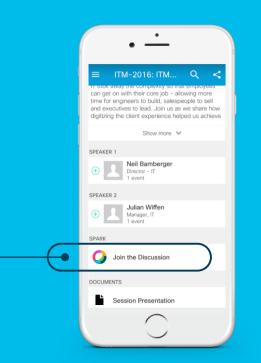
#CLUS

Give us your feedback to be entered into a Daily Survey Drawing.

Complete your session surveys through the Cisco Live mobile app or on <u>www.CiscoLive.com/us</u>.

Don't forget: Cisco Live sessions will be available for viewing on demand after the event at <u>www.CiscoLive.com/Online</u>.

Cisco Webex Teams 🥥

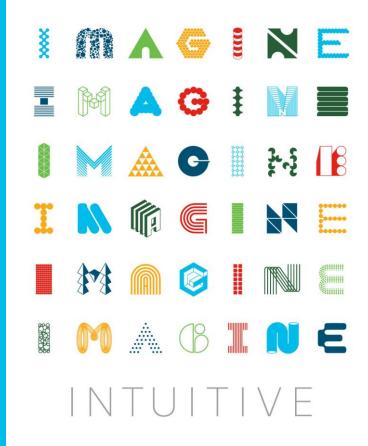

Questions?

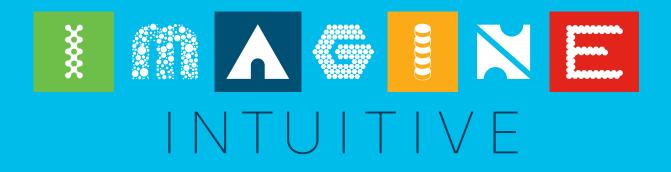
Use Cisco Webex Teams (formerly Cisco Spark) to chat with the speaker after the session

How

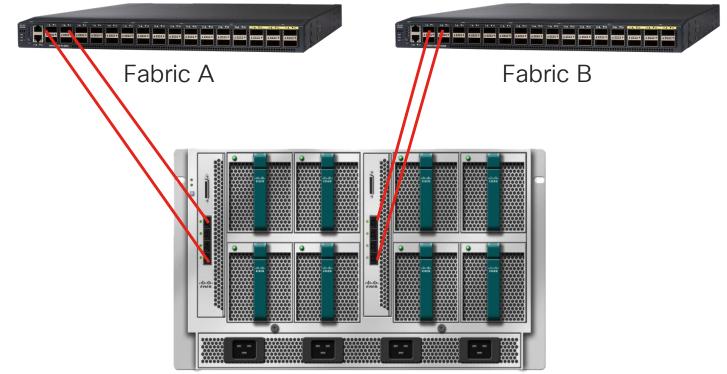
- **1** Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Webex Teams will be moderated by the speaker until June 18, 2018.


cs.co/ciscolivebot#TECINI-2543



Thank you



ıılıılıı cısco

Unified Computing Systems UCS Blade Server Architecture

Nvidia GPUs for Compute on Cisco UCS M5 server

With full UCS-Manager integration

	P100 (UCSC-GPU-P100-12G UCSC-GPU-P100-16G)	P40 (UCSC-GPU-P40)	P4 (UCSC-GPU-P4)
GPU	GP100	GP102	GP104
PEAK FP64 (TFLOPs)	4.7	NA	NA
PEAK FP32 (TFLOPs)	9.3	12	5.5
PEAK FP16 (TFLOPs)	18.7	NA	NA
PEAK TIOPs	NA	47	22
Memory Size	16/12 GB HBM2	24 GB GDDR5	8 GB GDDR5
Memory BW	732/549 GB/s	346 GB/s	192 GB/s
Interconnect	PCle Gen3	PCle Gen3	PCle Gen3
ECC	Internal + HBM2	GDDR5	GDDR5
Form Factor	PCIE Dual Slot	PCIE Dual Slot	PCIE LP
Power	250 W	250 W	50-75 W

