A Comprehensive Guide to
Kubernetes Networking with
the Intersight Kubernetes
Service

Contents

Introduction 3
Addresses and components 3
Explanation of the IKS cluster setup wizard 4
Step 1 - General 5
Step 2 - Cluster Configuration 5
Step 3 - Control plane node pool configuration 7
Step 4 - Worker node pools configurations 9
Kubernetes networking concepts 10
Container-to-container communications 11
Pod-to-pod communication on IKS 14
Kubernetes Services - tracking pods and providing external access 19
Kubernetes Ingress: rule-based routing 35
Ingress configuration when serving assets 37
Putting it all together - an end-to-end flow 52
Test setup 52
High-level flow 55
Troubleshooting IKS networking connectivity 74

© 2021 Cisco and/or its affiliates. All rights reserved. Page 2 of 76

Introduction

Few open-source projects have been as widely and rapidly adopted as Kubernetes (K8s), the de facto
container orchestration platform. With Kubernetes, development teams can deploy, manage, and scale their
containerized applications with ease, making innovations more accessible to their continuous delivery pipelines.

Cisco Intersight™ Kubernetes Service (IKS) is a fully curated, lightweight container management platform for
delivering multicloud production-grade upstream Kubernetes. It simplifies the process of provisioning, securing,
scaling, and managing virtualized Kubernetes clusters by providing end-to-end automation, including the
integration of networking, load balancers, native dashboards, and storage provider interfaces.

Addresses and components

IKS builds a Kubernetes cluster using 100% upstream native K8s images and therefore provides the same
networking as a K8s cluster built from the ground up. This document will cover the following concepts:

Control plane and worker node addresses
Pod addresses

Cluster IP service addresses
Load-balancer server addresses

Kubernetes API server virtual IP address

To implement networking in each cluster, IKS uses the following components:

CNI: Calico running in IPIP overlay mode
L3/L4 load balancing: MetalLB running in Layer-2 mode (ARP)
L7 ingress: NGINX

© 2021 Cisco and/or its affiliates. All rights reserved. Page 3 of 76

Explanation of the IKS cluster setup wizard

The IKS cluster setup wizard contains six steps. Configurations relating to cluster networking are found in steps
2, 3, and 4.

Progress

General

Control Plane Node Pool Configuration

Worker Node Pools Configuration

Add-ons Configuration

Summary

Figure 1.
Steps in the IKS cluster creation wizard

If you have not yet built an IKS cluster in Cisco Intersight, please read through the IKS user guide below (this
white paper is not designed to replace the user guide but to complement it with details on the networking
configuration): https://intersight.com/help/saas/resources/intersight kubernetes service user guide

© 2021 Cisco and/or its affiliates. All rights reserved. Page 4 of 76

https://intersight.com/help/saas/resources/intersight_kubernetes_service_user_guide

Step 1 - General

There is no network relation configuration on this page

Step 2 - Cluster Configuration

The cluster configuration page contains the following cluster-wide network related configurations:
e |P pool
o Load balancer count
o DNS server
e Pod network CIDR

« Service network CIDR

Step 2
Cluster Configuration
Netw

IP Pool *
Selected IP Pool: iks-demo-ip-pool

SSH User *

iksadmin © SSH Public K

Policies

+ DNS, NTP and Time Zone

— NetworkCIDR /N

192.168.0.0/16 © 10.96.0.0/1¢

-+ Trusted Registries (Optional Policy)

-+ Container Runtime Policy (Optional Policy)

Figure 2.
The relevant fields relating to the IKS cluster-wide networking configuration

© 2021 Cisco and/or its affiliates. All rights reserved. Page 5 of 76

IP pool
In the context of IKS, an IP pool is used to allocate Kubernetes API Server Virtual IP, node IP addresses, and
Kubernetes LoadBalancer Service (MetalLB) IP addresses.

In this step, the IP pool is only used for the LoadBalancer Service addresses. This subnet must be routable and
not overlap with an existing subnet in your environment.

IP pools support IPv4 addresses.

Figure 3.
IKS IP pool. This example uses the same pool for the control plane, workers nodes, and LoadBalancer Service
Load balancer count

The load-balancer count field is used by the Kubernetes LoadBalancer Service. Use this field to specify how
many IP addresses you wish to make available. These IP addresses are selected from your IP pool. When you
create a new LoadBalancer service in your IKS cluster, MetalLB will assign an available IP address from the IP
pool you have selected above. By default, IKS uses one IP address to provide external access to the cluster
through the NGINX ingress.

DNS server

This field is used to configure the DNS server and suffix settings on the control plane and worker nodes. This
will allow the nodes to perform DNS lookups. Kubernetes also provides DNS through the CoreDNS pods running
on your cluster.

Pod network CIDR

Each control plane and worker node in your IKS cluster will receive its own internal subnet. This subnet is used
to provide every pod an individual IP.

"By default, Calico uses an IPAM block size of 64 addresses — /26 for IPv4”
(Quoted from https://docs.projectcalico.org/networking/change-block-size)

The value that you enter in this field depends on the total number of nodes in the cluster (maximum size of
control plane nodes + maximum size of worker nodes).

A minimum of 64 IP addresses must be available to each node for host assignment.

A valid size for a pod network is the maximum number of nodes in your cluster * 64. For example if you have if
you have a cluster with one control node and three worker nodes, you would need a /24.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 6 of 76

https://docs.projectcalico.org/networking/change-block-size

This field should not overlap with an existing subnet in your environment. Note that the pod network is non-
routable outside of the cluster and can be reused for other clusters (as long as you don’t build a service mesh
over both clusters).

Another common error is the following: if you are running an application in a pod that is trying to access an
external resource that is also in the same subnet as the pod network, you will have conflicts because the pod
traffic is routed to other pods.

Service network CIDR

Every time a Kubernetes service (ClusterlP, NodePort, or LoadBalancer) is created, a cluster IP is assigned. This
is an internal, non-routable address that is used to forward traffic in a cluster. For the service network CIDR, the
validation only needs to have a minimum of /24. Any bits above /24 will be rejected. For example, /25 through
/30 would fail the validation since service network CIDRs require at least 254 hosts.

A valid prefix for a service network CIDR can be between /24 (254 hosts) through /8 (16,777,214 hosts). A
CIDR prefix /25 or greater will fail.

Step 3 - Control plane node pool configuration
The following configuration is networking related for the control plane nodes:
e |P pool

¢ Virtual machine infrastructure configuration

Step 3
Control Plane Node Pool
Configuration

Control Plane Node Pool Configuration

Control Plane Node Pool

Control Plane Node Configuration

Kubernetes Version *

Selected Version: iks-demo-kubernetes-version1.19-policy <

IP Pool *

SelectelePool iks-demo-ip-pool <@

Kubernetes Labels

Key

Virtual Machine Infrastructure Configuration *

Selected Virtual Machine Infra Config: vsphere @& | X

Virtual Machine Instance Type *

Selected Instance Type: iks-demo-vm-instance-type-medium <&

Figure 4.
The configuration of the IKS control plane nodes

© 2021 Cisco and/or its affiliates. All rights reserved. Page 7 of 76

IP pool
As noted before, in the context of IKS, an IP pool is used to allocate node IP addresses and Kubernetes
LoadBalancer Service (MetalLB) IP addresses.

In this step, the IP pool is used to assign IP addresses to the control plane nodes. You may need to have your
control plane nodes on a different subnet from your LoadBalancer IPs, hence the need to select the IP pool
twice. If you have a single routable subnet, you can select the same IP pool for both the LoadBalancer Service
and your node IPs.

This subnet must be routable and not overlap with an existing subnet in your environment.
IP pools support IPv4 addresses.

Virtual machine infrastructure configuration

Since IKS currently runs in a virtualized environment, you need to provide the configuration to use for the VM
settings when they are deployed (for example, VMware vSphere). Specifically relating to networking is the VM
adapter interface that the control plane node will use (for example, the vSphere port group).

= Progress

Step 2
Policy Details

Figure 5.
The configuration screen for the virtual machine infrastructure configuration

© 2021 Cisco and/or its affiliates. All rights reserved. Page 8 of 76

Step 4 - Worker node pools configurations

The following configuration is networking-related for the worker nodes:

e |P pool

Step 4
Worker Node Pools Configuration

Add Worker Node Pool

Worker Node Pool 1

Name *

iks-networking-example

Worker Node Counts

Kubernetes Version *

Selected Version: iks-demo-kubernetes-version1.19-policy

IP Pool *

Selected IP Pool: iks-demo-ip-pool

Kubernetes Labels

Figure 6.
The configuration screen for a single worker node pool

© 2021 Cisco and/or its affiliates. All rights reserved. Page 9 of 76

IP pool

As noted before, in the context of IKS, an IP pool is used to allocate node IP addresses and Kubernetes
LoadBalancer Service (MetalLB) IP addresses.

In this step, the IP pool is used to assign IP addresses to the worker nodes. You may need to have your worker
nodes on a different subnet from your control plane nodes and LoadBalancer IPs, hence the need to select the
IP pool a third time. If you have a single routable subnet, you can select the same IP pool for both the
LoadBalancer Service and your node IPs (control plane and worker).

This subnet must be routable and not overlap with an existing subnet in your environment.
IP pools support IPv4 addresses.

Currently IKS Ul only allows specifying one InfraConfigPolicy (that is, a virtual machine infrastructure
configuration) for all the node pools. If you are specifying different subnets for each node pool, you need to
ensure that they are routable through the network interface specified in the InfraConfigPolicy. The network
interface was specified in Figure 5, above.

Alternatively, you can specify a different InfraConfigPolicy for each node pool that uses a different subnet/IP
Pool. Note that this option is only currently available through the IKS API.

Kubernetes networking concepts

The following section will give you an introduction to Kubernetes networking in general. An IKS cluster with two
worker nodes has been configured with the following networking settings for the purposes of this example:

o Node IP pool: 10.1.110.0/24 (externally routable)

o LoadBalancer IP pool: 10.1.110.0/24 (externally routable)
o Pod network CIDR: 192.168.0.0/16 (non-routable)

« Service network CIDR: 10.96.0.0/16 (non-routable)

The pod subnets of 192.168.104.64/26 and 192.168.8.192/26 have been assigned for worker1 and worker2,
respectively.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 10 of 76

Container-to-container communications

Shared volume communication

worker1

Figure 7.
An illustration of a pod running two containers on an IKS node using a shared volume for networking

The smallest object you can deploy in Kubernetes is a pod; however, within each pod you may want to run
multiple containers. A common use-case for this is a helper where a secondary container helps a primary
container with tasks such as pushing and pulling data.

Container-to-container communication within a K8s pod uses either the shared file system or the local-host
network interface.

You can test this by using the K8s-provided example, two-container-pod, available through this link:

https://k8s.io/examples/pods/two-container-pod.yaml

When you deploy this pod, you should see two containers, nginx-container and debian-container. When the
shared volume method is used, Kubernetes will create a volume in the pod that is mapped to both containers. In
the nginx-container, files from the shared volume will map to the /usr/share/nginx/html directory, while in the
debian-container, files will map to the /pod-data directory.

When a file is updated (for example, index.html) from the Debian container, this change will also be reflected in
the NGINX container, thereby providing a mechanism for a helper (Debian) to push and pull data to and from
NGINX.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 11 of 76

https://k8s.io/examples/pods/two-container-pod.yaml

apiVersion: vl
kind: Pod
metadata:
name: two-containers
spec:
restartPolicy: Never

volumes:
- name: shared-data
emptyDir: {}

containers:
— name: nginx-container
image: nginx
volumeMounts:
- name: shared-data
mountPath: /usr/share/nginx/html

— name: debian—-container
image: debian
volumeMounts:
- name: shared-data
mountPath: /pod-data
command: ["/bin/sh"]
args: ["-c", "echo Hello from the debian container > /pod-
data/index.html1"]

Figure 8.
The YAML used to deploy the shared volume communication example

© 2021 Cisco and/or its affiliates. All rights reserved. Page 12 of 76

Local-host communication

worker1
shared-data volume
index.html
Jusr/share/nginx/html/index.html /pod-data/index.html
nginx-container debian-container
two-containers pod
Figure 9.

An illustration of a pod running two containers on an IKS node using the local host for networking

The other method for multiple containers to communicate within a pod is through the local-host interface and
the port number to which they’re listening.

You can test this again by using the K8s-provided example, two-container-pod, and modifying it slightly:
https://k8s.io/examples/pods/two-container-pod.vaml

In this example NGINX is listening on port 80. If you run curl https://localhost from within the Debian container,
you should see that the index.html page is served back from NGINX.

You can have multiple containers per pod in Kubernetes. This means that all containers in a pod share the same
network namespace, IP address, and interfaces.

tPolicy: Never

contalners:

— name: nginx-container
image: nginx

- name: debian-container
’ debian

Figure 10.
The YAML used to deploy the local-host communication example

© 2021 Cisco and/or its affiliates. All rights reserved. Page 13 of 76

https://k8s.io/examples/pods/two-container-pod.yaml

Pod-to-pod communication on IKS

Important point: The following examples will use the Kubernetes guestbook application:
https://raw.qgithubusercontent.com/kubernetes/examples/master/guestbook/all-in-one/guestbook-all-in-

one.yaml

To follow along, deploy the Kubernetes guestbook to your IKS cluster.

kubectl apply -f
https://raw.githubusercontent.com/kubernetes/examples/master/guestbook/all-in-
one/guestbook-all-in-one.yaml

This application comprises two tiers, the front-end web server (Apache) and the back-end DB (Redis). Each tier
has multiple pods deployed, with the pods running across two IKS worker nodes.

worker1 worker2

root namespace root namespace

Backend Backend
pod 1 pod 2

192.168.104.110 192.168.8.249

192.168.104.64/26 192.168.8.192/26

Figure 11.
The IP addresses and subnets used in the subsequent examples

Network namespaces

Kubernetes and containers rely heavily on Linux namespaces to separate resources (processes, networking,
mounts, users, etc.) on a machine.

"Namespaces are a feature of the Linux kernel that partitions kernel resources such that one set of
processes sees one set of resources while another set of processes sees a different set of resources. . . .

"Network namespaces virtualize the network stack. Each network interface (physical or virtual) is present

in exactly 1 namespace and can be moved between namespaces.

Each namespace will have a private set of IP addresses, its own routing table, socket listing, connection
tracking table, firewall, and other network-related resources.”
(Quoted from https://en.wikipedia.org/wiki/Linux namespaces.)

If you come from a networking background, the easiest way to think of a namespace is as functioning like a
VRF; in Kubernetes each pod receives its own networking namespace (VRF).

Additionally, each Kubernetes node has a default or root networking namespace (VRF) that contains the
external interface (for example, ens192) of the Kubernetes node.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 14 of 76

https://raw.githubusercontent.com/kubernetes/examples/master/guestbook/all-in-one/guestbook-all-in-one.yaml
https://raw.githubusercontent.com/kubernetes/examples/master/guestbook/all-in-one/guestbook-all-in-one.yaml
https://en.wikipedia.org/wiki/Linux_namespaces

When a pod is deployed Kubernetes first creates the pause container. This container runs a constant loop and
allows for the networking namespace, and other resources used by all containers in a pod, to be available.

You can view the pause containers by SSHing into one of the Kubernetes nodes and running sudo docker ps -a
| grep pause

Important point: Linux namespaces are different from Kubernetes namespaces. All mentions in this post
are referring to the Linux network namespace.

Virtual cables and virtual Ethernet (veth) pairs
Within each pod exists an interface (for example, eth0). This interface allows connectivity outside the pods
network namespace and into the root network namespace.

In the physical world, you might connect two interfaces together with a cable, for example, between a server
and a switch. Kubernetes pods and nodes also have two connected interfaces. One side (for example, the ethO
interface) resides in the pod and the other side (for example, the virtual Ethernet interface) exists in the root
namespace of the Kubernetes node.

Instead of a physical cable, these two interfaces are connected by a virtual cable. This is known as a virtual
ethernet (veth) device pair and allows connectivity outside of the pods. See Figure 11, above, for an illustration.

Connectivity between veths
The connection from the virtual Ethernet (veth) interfaces to other pods and the external world is determined by
the CNI plugin. For example, it may be a tunneled interface or a bridged interface.

Important point: Kubernetes does not manage the configuration of the pod-to-pod networking itself;
rather, it outsources this configuration to another application, the Container Networking Interface (CNI)
plugin.

"A CNI plugin is responsible for inserting a network interface into the container network namespace (e.qg.
one end of a veth pair) and making any necessary changes on the host (e.g. attaching the other end of
the veth into a bridge). It should then assign the IP to the interface and setup the routes consistent with
the IP Address Management section by invoking appropriate IPAM plugin.”

(Quoted from https://qithub.com/containernetworking/cni/blob/master/SPEC.mdHoverview-1)

Other popular plugins include Calico, Flannel, and Contiv, with each implementing the network connectivity in
their own way.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 15 of 76

https://github.com/containernetworking/cni/blob/master/SPEC.md#overview-1

Although the methods of implementing networking connectivity may differ between CNI plugins, every one of
them must abide by the following requirements that Kubernetes imposes for pod-to-pod communications:

¢ Pods on a node can communicate with all pods on all nodes without NAT.

« Agents on a node (for example, system daemons, kubelets) can communicate with all pods on that
node.

e Pods in the host network of a node can communicate with all pods on all nodes without NAT.

(Quoted from https://kubernetes.io/docs/concepts/cluster-administration/networking)

Important point: NAT is still used to provide connectivity such as source NAT on egress from pod to an
external network, or destination NAT, on ingress from the internet into a pod.

The CNI plugin model

A CNI plugin is in fact an executable file that runs on each node and is located in the /opt/cni/bin directory.
Kubernetes runs this file and passes it the basic configuration details, which can be found in /etc/cni/net.d.

IKS uses the Calico IP-IP encapsulation method to provide connectivity between pods. It is responsible for
setting up the routing and the interfaces and assigning IP addresses to each pod.

The main components that Calico uses to configure IKS networking on each node are the Felix agent and BIRD.

Felix agent

The Felix agent is the heart of Calico networking. Felix’s primary job is to program routes and ACLs on a
workload host to provide desired connectivity to and from workloads on the host.

Felix also programs interface information to the kernel for outgoing endpoint traffic. Felix instructs the host to
respond to ARPs for workloads with the MAC address of the host.

(Information from https://docs.projectcalico.org/reference/architecture/overviewsfelix)

BIRD

The BIRD Internet Routing Daemon (BIRD) gets routed from Felix and distributes these routes to BGP peers on
the network for inter-host routing.

When Felix inserts routes into the Linux kernel FIB, the BGP client distributes them to other nodes in the
deployment.

(Information from https://docs.projectcalico.org/reference/architecture/overviewttbird)

In the context of IKS, the BGP peers are the control plane and worker nodes. BIRD runs on each node within the
calico-node pods in the kube-system namespace.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 16 of 76

https://kubernetes.io/docs/concepts/cluster-administration/networking
https://docs.projectcalico.org/reference/architecture/overview#felix
https://docs.projectcalico.org/reference/architecture/overview#bird

Remote pods available through tunlO interface

ample-cl-iks-networ-72 $ ip a
lo: <LOOPBACK,UP,LONER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1800
link/loopback ©6:60:08:09:00:00 brd 60:00:60:00:60:00
inet 127.6.6.1/8 scope host lo

min tworking-example-c 950:~§ route
Kernel IP routing table
Gateway Genmask Flags Metric Ref Use Iface
10.1.110.254 0.6.0.0 w8

@ ens192

.0.0. 255.255.255.8 U 8 ens192
0.1.110.187 255.255.255.192 UG @ tunle
255.255.255.192 U @
255.255.255.255 UH 0 caliBb847a58255
255.255.255.255 UH @ cali25d99e8bble
255.255.255.255 UH 0 caliB859017a68db
255.255.255.255 UH 0 cali182c6119a57
.168.184.118 255.255.255.255 UH @ cali22daS9aed9a
.168.184.114 255.255.255.255 UH @ califa6fcce6141
.168.184.115 6.0.6. 255.255.255.255 UH 8 calib1ddsb3bds1
.168.165.192 18.1.118.108 255.255.255.192 UG 2 8 tunld

t forever preferred_1ft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_1ft forever
: ens192: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 156@ qdisc mq state UP group default qlen 1008
link/ether 08:50:56:93:fd:86 brd ff:ff:ff:ff:ff:ff
inet 10.1.118.102/24 brd 18.1.110.255 scope global ens192
valid_1ft forever preferred_1ft forever
inet6 fe8d: :250:56ff:fe93:fd@6/64 scope link
valid_1ft forever preferred_lft forever
: cali859817a68dbeif4: <BROADCAST,MULTICAST,UP,LONER_UP> mtu 1440 qdisc noqueue state UP group default
link/ether ee: ee:ee:ee brd ff:ff:ff:ff:ff:ff link-netnsid 8
inet6 fe8d: :ecee:eeff:feee:cece/64
valid_1ft forever preferred_lft
veth for local pods : tunlOONONE: <NOARP,UP,LONER_UP> mtu 1448 qdisc noqueue state UNKNOWN group default qlen 1080
link/ipip ©.6.8.8 brd 0.6.8.0
inet 192.168.184.64/32 brd 192.168.104.64 scope global tunld
valid_1ft forever preferred_1ft forever
: caliBb847a58255€if4: <BROADCAST, MULTICAST,UP, LOWER_UP> mtu 1448 qdisc noqueue state UP group default
link/ether ee:ee:ee:ee:ee:ee brd ff:ff:ff:ff:ff:ff link-netnsid 1
root namespace inet6 fe8d: :ecee:eeff:feee:eeee/64 scope link
valid_1ft forever preferred_1ft forever

.168.104.99

[}
1
[]
]
.168.104.67 ©
e
.168.184.109 0

8

[}

.0.0.
.0.0
.0.0
.0.0.
.8.0.
.0.8.
.8.8
]

coooooo®

mmu I : cali25d99e8bble@if4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1448 qdisc noqueue state UP group default
) (,) link/ether ee ee:ee:ee brd ff:ff:ff:ff:ff:ff link-netnsid 2
10.1.110.102 inet6 fe80::ecee:eeff:feee:eeee/64 scope link

valid_1ft forever preferred_1ft forever
: cali162c6119a57€if4: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1448 qdisc noqueue state UP group default
FFFFIff link-netnsid 3
off :feee:eeee/64 scope link
valid_1ft forever preferred_lft forever
veth : cali?2daS9aed9a@if4: <BROADCAST,MULTICAST,UP, LONER_UP> mtu 1448 qdisc noqueue state UP group default
link/ether ee:ee:ee:ee:ee:ee brd ff:ff:ff:ff:ff:ff link-netnsid 5
inet6 fe80::ecee:eeff:feee:eeee/64 scope link
valid_1ft forever preferred_lft forever
eth0 : califa6fcc@6141@if4: <BROADCAST,MULTICAST,UP, LONER_UP> mtu 1448 qdisc nogueue state UP group default
link/ether ee:ee:ee:ee:eeee brd ff:ff:ff:ff:ff:ff link-netnsid 4
inet6 fe8o: :ecee:eeff:feee:eeee/64 scope link

FRONTEND
POD 1

BACKEND valid_1ft forever preferred_lft forever
5: calib1dd5b3bd81@if4: <BROADCAST,MULTICAST,UP, LONER_UP> mtu 1448 qdisc noqueue state UP group default
POD 1 link/ether ee ee:ee:ee brd ff:ff:ff:ff:ff:ff link-netnsid 6
inet6 fe80: :ecee:eeff:feee:eeee/64 scope link
valid_1ft forever preferred_lft forever
ksadminei king-example-c 0:~$ |

192.168.104.64/26

Figure 12.
The interfaces and routes configured on the worker1 node

iksadmin@iks-networking-example-cl-iks-networ-7ab29bc950:~$8 ip route
default via 10.1.110.254 dev ens192 proto static

10.1.110.08/24 dev ens192 proto kernel scope link src 10.1.110.10
192.168.8.192/26 via 10.1.110.107 dev tunl® proto bird onlink
blackhole 192.168.104.64/26 proto bird

192.168.104.66 dev caliB8b847a58255 scope link

192.168.104.67 dev cali25d99e8bb1e scope link

192.168.104.99 dev cali859017a68db scope link

192.168.104.109 dev cali182c6119a57 scope link

192.168.104.110 dev cali22da59aed9a scope link

192.168.104.114 dev califa6fcc06141 scope link

192.168.104.115 dev calib1dd5b3bd81 scope link

192.168.104.117 dev calic440f455693 scope link
192.168.165.192/26 via 10.1.110.108 dev tunl® proto bird onlink

Figure 13.
The routing table on worker1 showing the routes to worker2 (192.168.8.192/26) installed by BIRD

© 2021 Cisco and/or its affiliates. All rights reserved. Page 17 of 76

For peer /host/iks-networking-example-cl-controlpl-1c6b752d98/ip_addr_v4
protocol bgp Mesh_106_1_116_108 from bgp_template {

neighbor 16.1.110.188 as 64512;

passive on; # Mesh is unidirectional, peer will connect to us.

}

For peer /host/iks-networking-example-cl-iks-networ-7ab29bc956/ip_addr_v4
protocol bgp Mesh_10_1_116_102 from bgp_template {

neighbor 16.1.110.162 as 64512;
}

For peer /host/iks-networking-example-cl-iks-networ-ac625d72ba/ip_addr_v4
Skipping ourselves (10.1.110.107)

Global peers
No global peers configured.
Node-specific peers
No node-specific peers configured.

[root@iks-networking-example-cl-iks-networ-ac625d72ba /]#

Figure 14.
Output from /etc/calico/confd/config/bird.cfg in one of the calico-node pods showing the BGP configuration which was
automatically created by BIRD

-networking-example-cl-iks-networ-7ab29bc958:~$ sudo tcpdump -v -i ens192 tcp port 179
tening on ens192, link-type EN1@MB (Ethernet), capture size 262144 bytes
:30:05.909881 IP (tos Oxc@, ttl 64, id 31472, offset @, flags [DF], proto TCP (6), length 71)
16.1.110.1087.60695 > 10.1.110.102.bgp: Flags [P.], cksum ©xd8af (correct), seq 317187071:317107898, ack 1227624664, win 502, options [nop,nop,TS val 3787605346 ecr 2965967288), length 19: BGP
Keepalive Message (4), length: 19

08:30:65.911739 IP (tos Bxc@, ttl 64, id 11868, offset 8, flags [DF], proto TCP (6), length 52)
.1.110.102.bgp > 10.1.110.167.60695: Flags [.], cksum Bxff9 (incorrect -> 8x53de), ack 19, win 589, options [nop,nop,TS val 2966831804 ecr 3707685346], length @
:30:10.900578 IP (tos @xc@, ttl 64, id 11869, offset @, flags [DF], proto TCP (6), length 71)
16.1.116.162.bgp > 10.1.116.107.60695: Flags [P.], cksum @xf1@c (incorrect -> 8x3c33), seq 1:28, ack 19, win 569, options [nop,nop,TS val 2966635993 ecr 3767685346], length 19: BGP
Keepalive Message (4), length: 19

Figure 15.
Output from tecpdump showing the BGP keepalive messages between the control plane and worker nodess

As per Figure 12, the IKS cluster contains a number of interfaces that have been created:

ens192 is the interface for external connectivity outside of the node. In the following example it has an address
in the 10.1.110.0/24 subnet, which is routable in our environment. This is the subnet that was configured for the
IP pool in the IKS cluster setup.

tunlO is the interface that provides the IPIP encapsulation for remote nodes.
calixxxxx are the virtual ethernet interfaces that exist in the root namespace.
Remember, from before, that the veth interface connects to the eth interface in a pod.

Important point: As mentioned earlier, IKS implements Calico configured for IP-IP encapsulation. This is
the reason for the tunneled interface (tunl0). A Kubernetes cluster with a different CNI plugin may have
different interfaces, such as docker0, flannel0, or cbrO.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 18 of 76

You’ll note in the routing table that Calico has inserted some routes. The default routes direct traffic out the
external interface (ens192).

The following output is from the worker1 routing table on the example IKS cluster. This worker node has been
assigned the subnet 192.168.104.64/26 for pods. As you can see, any pods on this worker are accessible
through the veth interface, starting with calixxxxx.

Any time traffic is sent from a pod on worker1 to a pod on worker2, it is sent to the tunl0 interface.
If pod-to-pod communication takes place on the same node, it will send packets to the veth interfaces.

Traffic between pods on different worker nodes is sent to the tunlO interface, which will encapsulate the
packets with an outer IP packet. The source and destination IP addresses for the outer packet are the external,
routable addresses (10.1.110.x subnet in this example).

You can confirm the encapsulation is taking place by capturing packets from the external interface (ens192 in
the example). As shown in Figure 16 below, when traffic is sent from one Frontend Pod to another Frontend
Pod, the inner packets are encapsulated in an outer packet containing the external source and destination
addresses of the ens192 interfaces (10.1.110.102 and 10.1.110.107).

Since the 10.1.110.0/24 subnet is routable, the packets are sent upstream and find their way from worker1 to
worker2. Arriving at worker 2, they are decapsulated and sent onto the local veth interface connecting to the
Frontend Pod 2.

4 IP 16.1.110.18
9 IP 18.1.118

1416), length 4@: RESP

Figure 16.
Confirmation of IP-IP encapsulation for packets sent directly from pods running on different hosts.

Kubernetes Services - tracking pods and providing external access

Although pod-to-pod communication takes place using IP in IP encapsulation, that’s only part of the
implementation. It is not realistic that pods will communicate directly; for example, multiple pods may all
perform the same function, as is the case of the guestbook application.

The guestbook has multiple frontend pods storing and retrieving messages from multiple backend database
pods.

e Should each frontend pod only ever talk to one backend pod?
« If not, should each frontend pod have to keep its own list of which backend pods are available?

o If the pod subnets are internal to the nodes only and not-routable, how can the application be accessed
from an external network

All of these points are addressed through the use of Kubernetes Services. Services are a native concept to
Kubernetes, meaning they do not rely on an external plugin as is the case with the CNI for the pod and routing
configuration

© 2021 Cisco and/or its affiliates. All rights reserved. Page 19 of 76

There are three primary services available:
e ClusterlP
« NodePort

o LoadBalancer
Kubernetes Services help with the following:

« Keeping track of pods
« Providing internal access from one pod (for example, frontend) to another (for example, backend)

« Providing L3/L4 connectivity from an external client (for example, a web browser) to a pod (for example,
frontend)

192.168.104.115
app: guestbook

tier: frontend Se rvice — 192.168.8.199

192.168.8.250

Labels to track Endpoints

192.168.8.249

Frontend pod — I P
Service 192.168.104.110

ClusterlP: 10.101.156.138 Backend pods
backend.default.svc.cluster.local

192.168.104.115
10.1.110.105 ——» Service —— 192.168.8.199
192.168.8.250

External IPTables Frontend
pods

© 2021 Cisco and/or its affiliates. All rights reserved. Page 20 of 76

Labels, selectors, and endpoints

Labels and selectors are very important concepts in Kubernetes and are relevant to how a Kubernetes service
tracks endpoints.

"Labels are key/value pairs that are attached to objects, such as pods [and] are intended to be used to
specify identifying attributes of objects that are meaningful and relevant to users. Unlike names and
UIDs, labels do not provide uniqueness. In general, we expect many objects to carry the same label(s).”

"“Via a label selector, the client/user can identify a set of objects.”

(Quoted from https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/)

Keeping track of pods

guestbook 192.168.104.115

frontend — Se rvice —— 192.168.8.199

192.168.8.250

Labels to track Endpoints

To demonstrate Kubernetes services on IKS, have a look at the deployment file for the guestbook application
frontend pods.

piVersion: apps/vl
: Deployment
ta:

app: guestbook
tier: frontend

spec:
containers:
- name: php-redis
: gcr.io/google-samples/gb-frontend:v4

tainerPort: 80

Figure 17.
YAML definition for the guestbook frontend deployment

© 2021 Cisco and/or its affiliates. All rights reserved. Page 21 of 76

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

There are two labels, app: guestbook and tier: frontend, associated to the frontend pods that are deployed.
These pods will receive an IP address from the range 192.168.x.x that we specified in the IKS cluster creation
wizard (pod network CIDR).

Now look at the service description for the frontend pods. There is one service definition for each deployment
(frontend and backend in this example).

Service
frontend

)p: guestbook
: frontend

LoadBalancer

: guestbook
: frontend

Figure 18.
YAML definition for the guestbook frontend service

In this YAML the service has a selector that uses the same keys/values (app: guestbook and tier: frontend) as
are configured in the deployment.

When a service is created, Kubernetes will track the IP addresses assigned to any of the pods that use the
labels in the selector field. Any new pods created will automatically be tracked by Kubernetes.

As you scale up a deployment (potentially 100s or 1000s of pods deployed), Kubernetes will keep track of the
internal pod endpoint IP addresses (192.168.x.x in this example).

You can use the command, kubectl describe service <the-service-name>, to view the service type, the labels
Kubernetes is tracking, and the pod endpoints that have those same labels.

Providing internal access from one pod (for example, frontend) to another (for example, backend)

If you look at the pods or processes running on the Kubernetes nodes, you won’t find one named “Kubernetes
Service.” As per the Kubernetes documentation,

"A service is an abstraction which defines a logical set of Pods and a policy by which to access them.”

(Quoted from https://kubernetes.io/docs/concepts/services-networking/service/.)

© 2021 Cisco and/or its affiliates. All rights reserved. Page 22 of 76

https://kubernetes.io/docs/concepts/services-networking/service/

While a Kubernetes Service is a logical concept, under the covers a pod called kube-proxy is running on each
node to implements these rules.

The kube-proxy pod watches the Kubernetes control plane for changes. Every time a new service is created, it
will configure IPTables rules on the control plane and worker nodes. These rules redirect traffic from the
ClusterIP (see below for details) to the IP address of the pod (192.168.x.x in the example).

Netfilter, IPTables, and connection tracking (Conntrack)

IPTables and connection tracking play a large part in the forwarding of traffic in an IKS cluster. Although you
may only ever need to define Kubernetes resources such as a service or ingress, understanding how the rules
are implemented can help in some scenarios, for example, when troubleshooting.

“IPTables is a user-space utility program that allows a system administrator to configure the IP packet

filter rules of the Linux kernel firewall, implemented as different Netfilter modules.”

(Quoted from https://en.wikipedia.org/wiki/lptables.)

"The connection tracking system stores information about the state of a connection in a memory
structure that contains the source and destination IP addresses, port number pairs, protocol types,

state, and timeout. With this extra information, we can define more intelligent filtering policies.”

(Quoted from https://people.netfilter.org/pablo/docs/login.pdf.)

IPTables comprises tables with various purposes. The tables contain chains of rules that dictate how to treat
each packet. There are four main tables and five predefined chains (see details below). Custom chains can also
be created. This is shown later in more detail.

At a high level, a packet traverses the set of rules in each chain, and if a match is found, the packet can either
jump to another chain in the same table, or a verdict of accept, reject, or drop may affect the packet. If the
current rule does not match the patch, it continues to the next rule.

All chains in the NAT table

iksadmin@iks-networking-example-cl-iks-networ-ac625d72ba:~$ sudo iptables -L -t nat

Chain PREROUTING (policy ACCEPT 1 packets, 64 bytes)

pkts bytes target prot opt in out source destination

146K 1IM cali-PREROUTING all -- * * 0.0.0.0/0 /* cali:6gwbT8c1XdHdC1bl */

0.0.
146K 11IM KUBE-SERVICES all -- * * 0.0.0. 0.0.0.0/0 /* kubernetes service portals */

Chain INPUT (policy ACCEPT 1 packets, 64 byccSy
pkts bytes target prot opt in out source NAT table PREROUTING chain jumps to KUBE-SERVICES chain

Chain OUTPUT (policy ACCEPT 25 packets, 1500 bytes)

pkts bytes target prot opt in out source destination

29749 1785K cali-OUTPUT all -- * * 0.0.0.0/0 0.0.0.0/0 /* cali:tVnHkvAolSHuiPy@ */

29749 1785K KUBE-SERVICES all -- * * 0.0.0.0/0 0.0.0.0/0 /* kubernetes service portals */

Chain POSTROUTING (policy ACCEPT 146 packets, 10290 bytes)

pkts bytes target prot opt in out source destination

176K 12M cali-POSTROUTING all -- * .0.0. .0.0.0/ /* cali:031YWMrLQYEMItBS */

174K 12M KUBE-POSTROUTING all -- * .0.0. .0.0. /* kubernetes postrouting rules */

Figure 19.
IPTables tables and chains example

© 2021 Cisco and/or its affiliates. All rights reserved. Page 23 of 76

https://en.wikipedia.org/wiki/Iptables
https://people.netfilter.org/pablo/docs/login.pdf

Custom chain built for every
Kubernetes service. Jump to
custom chain on match.

e.g. DNS destination IP

Figure 20.
IPTables tables and chains example

Every pod tracked by the service
receives a custom chain

Random selection of pod is
performed

sudo iptables KUBE-SVC-TCOUZJCQXEZG
n KUBE-SVC-TCOU
pkts bytes targ
4K KUE Y V4 a 0.0).0.0.0/0 S d E g ty 0.50000000000
297K KUB 722GVAXXAY C 2.0.0.0/0 0.0

4HY

dns:dns *
udp t0:192

iksadmin@iks-networking-example-cl

Chain KU A34722GV

0.0.0.0/0

DNAT is used to rewrite the
destination (POD) address

Figure 21.
IPTables tables and chains example

© 2021 Cisco and/or its affiliates. All rights reserved. Page 24 of 76

iksadmin@iks-networking-example-cl-iks-

-A KUBE-SEP-A34722GVAXXAYIWX -p udp -m
-A KUBE-SEP-CU3CTFBR5K672XKC -p tcp -m
-A KUBE-SEP-GD4HYCWAWSZWAUQN -p udp -m
-A KUBE-SEP-JSVKI4WVPBZKAWS6 -p tcp -m

networ-ac625d72ba:

comment --comment
comment --comment
comment --comment
comment --comment

$ sudo iptables-save | grep kube-dns:dns | grep DNAT

"kube-system/kube-dns:dns" -m udp -j DNAT --to-destination 192.168.8.207:5
"kube-system/kube-dns:dns-tcp" -m tcp -j DNAT --to-destination 192.168.8.20
"kube-system/kube-dns:dns" -m
"kube-system/kube-dns :dns-tcp"

udp -j DNAT --to-destination 192.168.165.196:53
-m tcp -j DNAT --to-destination 192.168.165.196:53

S kubectl get pods -n kube-system -o wide
NAME
calico-kube-controllers-69fd84b94d-zfgdk
calico-node-dfrtm
calico-node-flgfn
calico-node-vskzh

cep-vin-manager-iks-networking-examnle-cl-controlnl-1c6h752d90

coredns-5fcb66¢999-c7hvs
coredns-5fcb66c999-1p18m

Figure 22.
IPTables tables and chains example

Prerouting

raw conntrack

To host?

routing
decision

Input

mangle filter

local process

Figure 23.
IPTables tables and chains

© 2021 Cisco and/or its affiliates. All rights reserved.

magle

STATUS RESTARTS Ip NODE

Running] 192.168.165.197 iks-networking-example-cl-controlpl-1c6b752d90
Running 1e. iks-networking-example-cl-iks-networ-ac625d72ba
Running 10.1.110.108 iks-networking-example-cl-controlpl-1c6b752d90
Running 10.1.110.162 iks-networking-example-cl-iks-networ-7ab29bc950
Running. 1A.1.11A.108 iks-networking-example-cl-controlpl-1c6b752d98
Running 2 192.168.8.207 iks-networking-example-cl-iks-networ-ac625d72ba
Running 192.168.165.196 iks-networking-example-cl-controlpl-1c6b752d90

nat

Forward Postrouting

Cronge | ot

Qutput

From host?

routing
decision

Page 25 of 76

Tables
« Raw
o This table is used to store rules that mark packets to opt out of connection tracking.

« Mangle

o These rules alter IP headers such as TTL and can also mark packets for further processing.

o NAT
o Rules that implement SNAT and DNAT functions
o Filter

o matches packets and takes action, for example, accept or drop

Chains
e Prerouting
o First chain used after traffic is received by an interface
« Forward
o Used for any packet that has been routed and is not destined for a local host process

o Postrouting

> Rules that apply to packets after a routing decision has been made and it’s determined they are not

for local host processes
¢ Input
> Packets destined for the host (that is, the Kubernetes node)
o ip route show table local
¢ Output

o Packets sent from the host

When manipulating and forwarding traffic in IKS, the Prerouting, Forward, and Postrouting chains are primarily

used.

© 2021 Cisco and/or its affiliates. All rights reserved.

Page 26 of 76

Viewing Kubernetes Services

Run the following command to view the Kubernetes services for your deployment.

kubectl get services

Kubernetes ClusterlP

. 192.168.8.249
Frontend pod —_ —
Service 192.168.104.110
ClusterlP: 10.101.156.138 Backend pods

backend.default.svc.cluster.local

The Kubernetes ClusterlP is an IP address assigned to a service that is internal to the Kubernetes cluster and
only reachable from within the cluster. This subnet was entered in the service network CIDR field as part of the
IKS cluster creation wizard.

Every time a new Kubernetes services is created a ClusterlP is assigned.

Continuing with the IKS guestbook example, each frontend and backend service has been configured with a
ClusterlP (for example, 10.96.127.227). The kube-proxy pod configures IPTables rules to redirect any traffic
destined to these ClusterlPs to one of the available pods for that service.

Services and Network Address Translation (NAT)

Network Address Translation (NAT) is used provide outbound connectivity from a pod to an external network, or
internal connectivity from a network to a pod.

+ Pod to external network

The pod subnets in IKS are internal to a cluster (192.168.x.x in the example). When a packet exits a
Kubernetes control plane or worker node from a pod, it requires an externally routable source address.
This is implemented using source NAT (SNAT). SNAT replaces the source IP on a packet.

IKS uses the IP address of the node from which the packet egresses as the source IP of the packet.
o External network to pod

Since the pod subnet (192.168.x.x in the example) is internal to the IKS cluster, packets coming from a
subnet that is not the pod network require an external IP address on which they can reach the pod.
Destination NAT (DNAT) changes the destination IP address from external address (for example, a node)
to the internal pod IP address. Packets from an external network to a pod also include return traffic (for
example, packets in a flow between frontend and backend pods). To handle return traffic, connection
tracking is implemented to maintain state and ensure that the return traffic reaches the correct
destination pod.

To recap, Kubernetes Services are translated into IPTables rules and provide connectivity between pods as well
as inbound and outbound traffic.

You can view the NAT configuration by viewing the IPTables rules.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 27 of 76

Figure 24.
IPTables rules implemented on worker node 1 for the guestbook frontend service

Figure 25.
IPTables rules implemented on worker node 1 for the guestbook frontend service. Three frontend pods exist; therefore,
three rules have been created. The pod selected to receive the traffic is chosen at random.

« KUBE-SERVICES is the entry point for service packets. What it does is to match the destination
IP:port and dispatch the packet to the corresponding KUBE-SVC-" chain.

« KUBE-SVC-" chain acts as a load balancer, and distributes the packet to KUBE-SEP-" chain equally.
Every KUBE-SVC-" has the same number of KUBE-SEP-' chains as the number of endpoints behind
it.

o KUBE-SEP-' chain represents a Service EndPoint. It simply does DNAT, replacing service IP:port
with pod's endpoint IP:Port.

(Quoted from https:
connection-reset/.)

© 2021 Cisco and/or its affiliates. All rights reserved. Page 28 of 76

https://kubernetes.io/blog/2019/03/29/kube-proxy-subtleties-debugging-an-intermittent-connection-reset/
https://kubernetes.io/blog/2019/03/29/kube-proxy-subtleties-debugging-an-intermittent-connection-reset/

DNS Services

Not only does Kubernetes assign each service a ClusterlP address, but DNS records are also automatically
configured. IKS will deploy CoreDNS pods to provide internal DNS resolution for your pods and services.

Important point: The DNS server address configured as part of the IKS cluster creation wizard applies to
the IKS control plane and worker nodes.

As per the following Kubernetes documentation,

"Kubernetes DNS schedules a DNS Pod and Service on the cluster and configures the kubelets to tell
individual containers to use the DNS Service’s IP to resolve DNS names.”

"Every Service defined in the cluster . . . is assigned a DNS name. By default, a client Pod’s DNS search
list will include the Pod’s own namespace and the cluster’s default domain.”

(Quoted from https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/.)

When the backend service is deployed as part of the guestbook application, not only is there an associated
ClusterlP address, but there is also a DNS record created, backend.default.svc.cluster.local. “Default” in this
case being the name of the Kubernetes namespace in which the backend pods run. Since every pod is
configured to automatically use Kubernetes DNS, the address above should resolve correctly.

In the guestbook example the frontend pods can reference backend.default.svc.cluster.local in the application
code. This will resolve to the ClusterlP address for the backend service which is then translated to one of the IP
addresses of these pods (192.168.x.x).

Providing external access to the cluster - NodePort service

192.168.104.115
10.1.110.105 —— Service ——— 192.168.8.199
192.168.8.250

External IPTables Frontend
pods

© 2021 Cisco and/or its affiliates. All rights reserved. Page 29 of 76

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

guestbook
: frontend

NodePort

: http

ors:
guestbook
: frontend

Figure 26.
YAML definition for the guestbook frontend service when using a NodePort

The Kubernetes Service configurations include a field, type, which describes the type of service. This can be a
type: clusterlP (as previously seen), type: NodePort, or type: LoadBalancer.

The NodePort service is configured by specifying a port (default is between 30000-32767) to which the
external traffic is sent. A target port on which the application is listening must also be configured. For example,
the guestbook application listens on port 80.

When this service has been configured, an external client can access the pods (for this service) using the IP
address of any IKS cluster nodes (externally routable 10.1.110.0 in the example) and the configured NodePort.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

frontend NodePort 10.96.17.201 <none> 80:32222/TCP
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP

Figure 27.
The output from running the kubectl get services command

Using the guestbook example, you can use https://<worker-node-ip>:32222 and have access to the
guestbook application through a browser.

Kubernetes will forward this traffic to one of the available pods on the specified target port (in this case, one of
the frontend pods, port 80).

© 2021 Cisco and/or its affiliates. All rights reserved. Page 30 of 76

kind: Service
type: NodePort
ports:
-targetPort: 80
nodePort: 32222
selector:
app:guestbook
tier:frontend

nodelP:nodePort
T https://10.1.110.102:32222

10.1.110.102 10.1.110.107

Figure 28.
Accessing the application through the IP address of a node and the configured NodePort

Under the hood, Kubernetes has configured IPTables rules to translate the traffic from the worker node IP
address: NodePort to the destination pod IP address:port.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 31 of 76

Providing external access to the cluster - LoadBalancer service
ion: vl
Service

guestbook
: frontend

LoadBalancer

guestbook

: frontend

Figure 29.
YAML definition for the guestbook frontend service when using a LoadBalancer

The Kubernetes LoadBalancer service exposes pods externally using either a public cloud provider or an on-
premises load balancer.

(Information from https://kubernetes.io/docs/concepts/services-networking/service/.)
MetalLB is automatically deployed into each IKS cluster and provides L3/L4 load balancing services.

As per the following document,

"MetallLB is a load-balancer implementation for bare metal Kubernetes clusters, using standard routing
protocols.”

(Information from https://metallb.universe.tf/.)

The LoadBalancer service relies upon an address selected from a pool that has been configured. This was the
load balancer count field in the IKS cluster creation wizard.

When a Kubernetes LoadBalancer Service is configured, MetalLB will allocate the next available IP address from
the pool of addresses provided. Any traffic destined to the IP is handled by MetalLB and forwarded onto the
correct pods.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 32 of 76

https://kubernetes.io/docs/concepts/services-networking/service/
https://metallb.universe.tf/

kind: Service
type: LoadBalancer
ports:
-port: 80
selector:
app:guestbook
¢ tier:frontend

loadbalancer VIP
https://10.1.110.104

: Metal LB :

5 VIP Pool :

T oHHrete4

L HeHetes

+ -10.1.110.106 ;
Figure 30.

Accessing the application through an IP address assigned by the MetalLB LoadBalancer
IKS uses MetalLB in Layer-2 mode (ARP/NDP).
As per the following document,

"Under the hood, MetalLB responds to ARP requests for IPv4 services, and NDP requests for IPv6. In
layer 2 mode, all traffic for a service IP goes to one node. From there, kube-proxy spreads the traffic to

all the service’s pods.”

(Quoted from https://metallb.universe.tf/concepts/layer2/.)

© 2021 Cisco and/or its affiliates. All rights reserved. Page 33 of 76

https://metallb.universe.tf/concepts/layer2/

You can verify that MetalLB is assigning IPs correctly by looking at the logs of the MetalLB pods.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

frontend LoadBalancer 10.96.17.201 10.1.110.104 80:32080/TCP 6h15m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 7h15m

Figure 31.
Output of the kubectl get services command showing the frontend service with a Loadbalancer external IP

Name: essential-metallb

Namespace: S

Labels: app=metallb
app . kubernetes.io/managed-by=Helm
chart=metallb-0.12.0-cisco3-helm3
heritage=Helm
release=essential-metallb

Annotations: meta.helm.sh/release-name: essential-metallb
meta.helm.sh/release-namespace: 1iks

address-pools:

- addresses:
- 10.1.110.104/32
name: reserved-pool
protocol: layer?2
addresses:
- 10.1.110.105/32
- 10.1.110.106/32
name: auto-assign-pool
protocol: layer?2

Events: <none>

Figure 32.
Output of the kubectl describe configmap essential-metallb -n iks command showing the configuration of MetalLB and
available addresses

© 2021 Cisco and/or its affiliates. All rights reserved. Page 34 of 76

Kubernetes Ingress: rule-based routing

s iks.ci L
IKS.CISCo.com svc-frontend:80

:/guestbook - 5 :
:/sockshop I n g ress svc-sockshop:80

Ingress controller

Routing rules .
e.g.nginx

Services

A Kubernetes Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster.
Traffic routing is controlled by rules defined on the Ingress resource.

There are a number of benefits to using an ingress:
o Centralized SSL termination
¢ Rule-based routing
¢ Reduction in IP address usage

There are a number of ways to configure a Kubernetes Ingress. A fanout is used for this example. A fanout
configuration routes traffic from a single IP address to more than one service.

apiVersion: networking.k8s.io/v1l
kind: Ingress
metadata:
name: guestbook
spec:
rules:
- http:
paths:
- path: /guestbook
pathType: Prefix
backend:
service:
name: frontend
port:
number: 80

- path: /wordpress
pathType: Prefix
backend:

service:
name: wordpress
port:
number: 80

Figure 33.
The YAML definition for a Kubernetes Ingress

Note in the YAML file above the set of rules defining two HTTP paths, one to a guestbook application and one
to a different application called Wordpress.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 35 of 76

Kubernetes Ingress controller

A Kubernetes Ingress itself does not provide the rule-based routing. Instead it relies on an ingress controller to
perform this function.

There are many ingress controller options available. IKS automatically deploys an NGINX ingress controller to
each Kubernetes cluster.

(Information from https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/.)
On each IKS node you should see an nginx-ingress-controller-xxxxx pod running.

IKS will automatically create a LoadBalancer Service to direct external traffic to the nginx-ingress-controller-
Xxxxx pods. Hence the reason for requiring at least one IP address in the load-balancer count field (cluster
creation wizard).

NAME

1 “t-mar
ential-metallb-c
ential-metall
ential-metall

ial-m
ential-ng

Figure 34.
The output of the kubectl get pods -n iks command showing the NGINX ingress controllers deployed on each IKS node

Figure 35.
The output of the kubectl get services -n iks command showing the NGINX ingress controller service (LoadBalancer)

Similar to how MetalLB works for Kubernetes Services, the NGINX controller will look for any changes to the
Kubernetes Ingress definition. When a new ingress is configured, the NGINX configuration (nginx.conf in the
nginx-ingress-controller-xxxxx pods) is updated with the new routing rules added to the ingress YAML file.

Each ingress controller also has options to provide annotations for custom configuration of the specific
controller. For example, you can find the available NGINX annotations at the following link:
https://kubernetes.qgithub.io/ingress-nginx/user-quide/nginx-configuration/annotations

Since the ingress controller is running in multiple pods, the LoadBalancer service provides direct external traffic
to one of the available NGINX controller pods.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 36 of 76

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/

From there the NGINX controller will redirect based on the path, either to the guestbook frontend service or the
Wordpress service. The services (IPTables rules) will in turn forward the traffic onto an available pod managed
by the respective service.

Use cases for a Kubernetes Ingress

Additional to the routing rules previously described, a Kubernetes Ingress helps conserve IP addresses. When a
service of type LoadBalancer is used, an externally routable address for each service configured must be
assigned. While the addresses may be available on premises, in a public cloud environment there can often be
a cost associated to each external IP address.

When using an ingress, a single external IP address can be assigned (for the ingress service). Each service
behind the ingress can then use a ClusterlP. In this scenario the services are only accessible through the
ingress and therefore don’t require a public IP address.

Kubernetes Ingress also provides a single ingress point for which all routing rules and TLS termination can be
configured.

Ingress configuration when serving assets
Depending on the applications you’re deploying, you may run into some issues while serving content through a
Kubernetes Ingress. For example, serving a webpage along with assets such as images, JS, and CSS files.

The following example will use the Kubernetes guestbook application (there is also a service named Wordpress
configured in the ingress examples below; however, only the guestbook is used).

Here is the Kubernetes Ingress definition. In this example the filename is ingress.yaml.

ion: networking.k8s.io/vl
Ingress

guestbook

! /guestbook

Figure 36.
The YAML definition for a Kubernetes Ingress

© 2021 Cisco and/or its affiliates. All rights reserved. Page 37 of 76

https://github.com/kubernetes/examples/blob/master/guestbook/all-in-one/guestbook-all-in-one.yaml

The application is deployed by applying both files.

kubectl apply -f guestbook-all-in-one.yaml

kubectl apply -f ingress.yaml

Once running, the guestbook application should be available using the IP address of the ingress controller.

kubectl -n iks get svc essential-nginx-ingress-ingress-nginx-controller -o
jsonpath="{.status.loadBalancer.ingress[0].ip}

http://10.1.110.105/

Ingress contoller . : g
(NGINX) 1 iceir ss-nginx-controlLer

10.1.110.105 essential-ng r \gress-nginx-defaul tbackend
Service €« C 0 AN 10.1.110.105
Guestbook
2
ee‘da‘
Frontend Frontend Backend Backend hi
pod pod pod pod

Figure 37.
The guestbook application when working correctly

You can view the files accessed by the guestbook by looking at the developer tools in your browser.

Opening the developer tools console in a browser

Chrome: https://developer.chrome.com/docs/devtools/open/

Firefox: https://developer.mozilla.org/en-US/docs/Tools

Figure 38.
The developer tools window when the guestbook application is working correctly

© 2021 Cisco and/or its affiliates. All rights reserved. Page 38 of 76

https://developer.chrome.com/docs/devtools/open/
https://developer.mozilla.org/en-US/docs/Tools

In the example, the path: / configuration in the ingress YAML file acts as a wildcard, therefore matching all
assets that are required (index.html, controllers.js, guestbook.php).

Important point: In Kubernetes 1.18 there are ingress enhancements (exact and prefix keywords) to
provide more granular control.

Since there's a match, the controller will forward these to the associated service, frontend.

The frontend webserver, Apache, has been configured as default and is serving content from the root
directory,/, so returns the requested files.

Frontend POD

>

2. Matches: /, Maps to: frontend

>

3. Get/

4. Returns index.html

<
5. Get https:// 10.1.110.105/controllers.js

P

6. Matches: /, Maps to: frontend

>

7. Get [controller.js

8. Returns controller.js

<

Figure 39.
The connection flow when working correctly

© 2021 Cisco and/or its affiliates. All rights reserved. Page 39 of 76

https://kubernetes.io/blog/2020/04/02/improvements-to-the-ingress-api-in-kubernetes-1.18/
https://kubernetes.io/blog/2020/04/02/improvements-to-the-ingress-api-in-kubernetes-1.18/

Single ingress for multiple applications

You may run into issues when trying to use the same root path when deploying multiple applications on the
same ingress.

In the following example, if the same path points to two different services there is no way to determine which
one is correct.

pathType: Prefix

name: frontend

- path: /
pathType: Prefix
d:
vice:

ne: wordpress

Figure 40.
The YAML definition for a Kubernetes Ingress with the same paths

To overcome this, each service can be accessed from a unique path.

/guestbook
Prefix

frontend
number: 80

/wordpress
Prefix

wordpress

number: 80

Figure 41.
The YAML definition for a Kubernetes Ingress with differing paths

© 2021 Cisco and/or its affiliates. All rights reserved. Page 40 of 76

Now that a path has been configured, the application will need to be accessed via http://<ingress-controller-

ip>/guestbook.
A 404 Page Not Found error should appear.

When traffic reaches the ingress controller, it matches path: /guestbook and is sent to the web server. The
browser is trying to access files located in the /guestbook subdirectory; however, the web server is serving
content from the root directory, /.

NGINX
ingress controller

10.1.110.105

Frontend POD

Apache

: frontend

1. Get https://10.1.110.105/guestbook

>

2. Matches: /guestbook, Maps to: frontend

3. Get /guestbook

4. /guestbook 404 not found
Figure 42.
A diagram of the connectivity when serving content from the root directory

Rewriting the location

/guestbook

pathType: Prefix
frontend

number: 80

/wordpress
Prefix

wordpress

number: 80

Figure 43.
YAML definition for an updated Ingress that includes the rewrite target

© 2021 Cisco and/or its affiliates. All rights reserved. Page 41 of 76

Kubernetes Ingress annotations can be used to overcome this initial issue. Specifically, for IKS use the
NGINX Ingress rewrite-target annotation.

(Information from https://kubernetes.github.io/ingress-nginx/examples/rewrite/.)

The annotations in the Kubernetes Ingress allow you to include custom configurations required for an ingress
controller environment. In this example, a custom NGINX configuration is added to the nginx.conf file on the
ingress controller pods automatically.

Important Point: The available annotations may differ depending on which ingress controller is used.
Using the rewrite-target annotation specifies the target URI where the traffic must be redirected.

In the example, the path, /guestbook, is matched. NGINX will then rewrite it to / before sending it to the web
server. As it is now rewritten to the root directory, /, the index.html file is returned correctly, as was the case in
the first scenario.

However, a problem still exists.

Within the index.html file is a reference to a few assets (CSS and JS files) that are used to build the guestbook.
When the page loads it tries to download the required files, one of those being controller.js. Because it is
rewriting to /, the index.html page is returned a second time.

B - -

1. Get https://10.1.110.105/guestbook/

>

2. Matches: /guestbook/, Rewrites to :/, Maps to: frontend

Frontend POD

Apache

>

3. Get /

4. Returns index.html

<
5. Get https:// 10.1.110.105/guestbook/controllers.js
>
6. Rewrites to /
>
7. Get/
8. Returns index.html
<
Figure 44.

A diagram of the connectivity when serving content from the root directory and rewriting the path at the ingress

© 2021 Cisco and/or its affiliates. All rights reserved. Page 42 of 76

https://kubernetes.github.io/ingress-nginx/examples/rewrite/

Guestbook

Messages

{{msg}}

AN

Preserve log Disable cache No throttling

edia Font Dx

gue

& angularmin js

controllers.js

Figure 45.
Output from the developer console showing the response returned

ng—app:“ redis">

le>Guestbook</t >
rel="styleshee href"'//netdna bootstrapcdn.com/bootstrap/3.1. 1/css/boo(strap min.css">
https: //a]ax googleapls com/a]ax/llbs/angular)s/l 2.12/angular.min.js"
controllers. -
ript src="https: //cdnjs cloudflare com/ajax/libs/angular-ui-bootstrap/0.13.0/ui-bootstrap-tpls.js"></script>
</neaa>
y ng-controller="RedisCtrl">
style="width: 50%; margin-left: 20px">

CONOOULAEWNRE

e
BWNRES

1t ng-model="msg" placeholder="Messages" class="form-control" type="text" name="input":
"button" class="btn btn-primary" ng-click="controller.onRedis()">Submit</button>

el)
©o~NO WU

v ng-repeat="msg in messages track by $index">

{(m;g}}

NNNNNNN
OB WNRES

Figure 46.
Source code for the guestbook index.html file

© 2021 Cisco and/or its affiliates. All rights reserved. Page 43 of 76

Here are some options to solve this problem.

Option 1: Serve this content from a different location

10.1.110.105

_ NGINX path: Jues ook/ Frontend POD
Browser . L=l
ingress controller serv - frontend Apache

1. Get https://10.1.110.105/guestbook/

>

2. Matches: /guestbook/, Maps to: frontend

>

3. Get /guestbook/

4. Returns index.html

<

5. Get http://netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css

>

6. Returns bootstrap.min.css netdna.bootstrapcdn.com

<

Figure 47.
Communication flow when serving content from a different location

The first option is to separate the static content from the main HTML files and host them externally.

An example of this in the guestbook application is the bootstrap.min.css file. Bootstrap is a popular frontend
open-source toolkit, is hosted on a Content Delivery Network (CDN), and is available for anyone to use.

When the page loads, the bootstrap CSS file is downloaded directly from the CDN. This means the ingress or
web server rules are not used to serve this file.

A drawback of this approach is having to manage the files that are hosted somewhere else.

ui-bootstrap-tpls.js'></scrig

CONOU A WN =

3" placeholder ' cla " fo xt" name="in

ton" class="btn btn .0)">Submit-

v ng-repeat="msg in messages track by $index">

{{msg}}

Figure 48.
Source code for the guestbook index.html file showing the use of a CDN for the bootstrap CSS file

© 2021 Cisco and/or its affiliates. All rights reserved. Page 44 of 76

Option 2: Modify the Kubernetes Ingress to include a capture group

“In Version 0.22.0 and beyond, any substrings within the request URI that need to be passed to the

rewritten path must explicitly be defined in a capture group.”
(Quoted from https://kubernetes.qgithub.io/ingress-nginx/examples/rewrite/Hrewrite-target)

The second option is to modify the Kubernetes Ingress to include the assets (e.g. controllers.js) when
rewriting the target. This is achieved through the use of a capture group. In Figure 49 there are two capture
groups, defined by the parentheses, which contain regex to match text. In the example in Figure 49, any text
matching the first capture group, (/]), can be accessed with $1. Any text matching the second capture group,
(.*), can be accessed by referencing $2.

To serve the static assets (e.g. controllers.js), the path should be rewritten to include the text in the second
capture group. The regular expression, (.*), used in this capture group will match any characters after
/guestbook/, for example /guestbook/controllers.js

working.k8s.1io/vl

= ‘ // HTTP/1.1" 200
frontend a // HTTP/1.1" 200

: 80

ntrollers

stbook. php?cmd=get&key=

Figure 49.
The modified Kubernetes Ingress which includes a capture group

© 2021 Cisco and/or its affiliates. All rights reserved. Page 45 of 76

https://kubernetes.github.io/ingress-nginx/examples/rewrite/#rewrite-target

sion: networking.k8s.io/v1
: Ingress

nginx. ingress. kubernet

path: /guestbook(/|)(.x*)

pathType:

- path: /wordpress
pathType: Prefix
backend:

service:

na wordpress

Figure 50.
Ingress YAML definition including the rewrite capture groups

Option 3: Change the Apache serving directory

NGINX - A3 Frontend POD
ingress controller . c frontend Apache

10.1.110.105

1. Get https://10.113.105.202/guestbook/

>

2. Matches: /guestbook/, Maps to: frontend

>

3. Get /guestbook/

4. Returns index.html

4l

e |
5. Get https://10.113.105.202/guestbook/controllers.js
>
6. Matches: /guestbook/*, Maps to: frontend
—
7. Get /guestbook/controller.js
8. Returns controller.js
<
Figure 51.

A diagram of the communication when modifying the web server to serve from a subdirectory

© 2021 Cisco and/or its affiliates. All rights reserved. Page 46 of 76

A third option is to modify the configuration on the web server, in this case Apache.

From the testing performed so far it is evident that a subdirectory, /guestbook, is required. When this was
configured the web server returned a 404. This was caused by Apache serving content from the root directory,
/. It was not able to find the guestbook subdirectory files.

To solve this problem you must tell Apache to stop serving content from root, /, and instead make /guestbook
the root directory.

In the apache2.conf configuration file you need to modify the DocumentRoot so it reads:
DocumentRoot /var/[www/html/guestbook
On Ubuntu you should find apache2.conf in the /etc/apache2/ directory.

Update this file and remove the rewrite-target annotation from the ingress because it is no longer serving
content from the root directory. Also move all the guestbook files (controllers.js, guestbook.php, index.html)
to a new folder so the new path is /var/www/html/guestbook. Restart Apache if needed.

If everything has worked the guestbook application should be loaded successfully and all static assets loaded
correctly.

Important point: Apache was used as the web server in the guestbook example.
You may need to modify different files depending on the web server you have deployed.

Ouestbook x +
Guestbook
hi

Biocked Requests

trap

" 7ema-gethkey -messages

Figure 52.
Output from guestbook when the ingress path is working correctly

© 2021 Cisco and/or its affiliates. All rights reserved. Page 47 of 76

Another example - Wordpress
In some cases you may not need to update the web server or code, for example if deploying a Wordpress site.

Wordpress is a popular opensource content management system that was originally created for blogging. It’s
made up of a PHP frontend with a MySQL database. In this example it is deployed in Kubernetes as two pods,
one frontend (Apache with PHP) and one DB (MySQL).

To configure Wordpress behind a Kubernetes Ingress you can change the working directory for the Wordpress
frontend deployment. In Figure 53 below you can see that the workingDir is /var/www/html/wordpress

ss—frontend

ss—=frontend

wordpress-frontend

ol: TCP

: 8@

ordpress-frontend

pe: ClusterIP

wp=pv=claim

© 2021 Cisco and/or its affiliates. All rights reserved. Page 48 of 76

standard

Filesystem

—frontend

wordpress-db

© 2021 Cisco and/or its affiliates. All rights reserved. Page 49 of 76

WORDPRESS_DB_PASSWORD
WORDPRESS_DB_PASSWORD

wordpress-pe ent-storage

mountPatt ’var/www/html

IfNotPresent

Recreate

nd: Deployment
apps/vl

ordpre

: wordpress=db

persistent-storage
umeClaim:

mysql-pv-claim

'mysql:5.6"

mysql

MYSQL_ROOT_PASSWORD
WORDPRESS_DB_PASSWORD

mysql-persistent-storage
: /varc/lib/mysql
IfNotPr: nt

Figure 53.
YAML for the all-in-one Wordpress deployment

© 2021 Cisco and/or its affiliates. All rights reserved. Page 50 of 76

When the configuration is applied, the deployment scripts will install Wordpress into the current working
directory (/var/www/html/wordpress).

From 20/08/202

Container | Wlll wordpress Lines | All logs

Figure 54.
Log files from the initial Wordpress deployment showing the Wordpress files are copied to the new subdirectory

10.1.110.105,

<

RS

[7 -

Just another Word

A Network
Preserve log Disable cache No thro

k JRLs Fetch/XHR

Headers

General

W style

B Jqueryjs?ver=1.12.4

Figure 55.
Developer tools output from the Wordpress deployment behind an ingress showing the Wordpress site is accessible from
the subdirectory

© 2021 Cisco and/or its affiliates. All rights reserved. Page 51 of 76

Putting it all together — an end-to-end flow
This section will trace the packet flow using the Wordpress all-in-one deployment from Figure 53.

Important point: The following configuration and patterns have been used to capture **some** data flows
for this example. This is not a complete output but aims to provide guidance on tracing flows.

Test setup
« |PTables was configured to log to /var/log/messages
e The following IPTables logging rules were configured.

o The log prefix is used when printing the output table and contains the chain and table information.
See Figure 56 below for an example.

HANDSHAKE

sudo iptables -t mangle -I cali-PREROUTING 1 -p tcp -m state --state NEW -j LOG --log-prefix
" _CALI_PRT NEW_CONN mangle " --log-level 1

sudo iptables -t raw -I cali-PREROUTING 1 -p tcp --tcp-flags SYN,ACK SYN,ACK -j LOG --log-
prefix "_CALI_PRT CONN_EST raw " --log-level 1

sudo iptables -t raw -I cali-PREROUTING 2 -p tcp --tcp-flags FIN,ACK FIN,ACK -j LOG --log-
prefix "_CALI_PRT CONN_CLOSED raw " --log-level 1

#H44 RAW ##44
sudo iptables -t raw -I cali-PREROUTING 3 -j LOG --log-prefix "_CALI_PRT raw " --log-level 1

MANGLE

sudo iptables -t mangle -I cali-PREROUTING 2 -j LOG --log-prefix " CALI_PRT CSTATE mangle "
--log-level 1

FILTER

sudo iptables -t filter -I cali-from-hep-forward 1 -j LOG --log-prefix "_CALI_FWD_TO_HEP
filter " --log-level 1

sudo iptables -t filter -I cali-from-hep-forward 1 -j LOG --log-prefix "_CALI_FWD_FROM HEP
filter " --log-level 1

sudo iptables -t filter -I cali-to-wl-dispatch 1 -j LOG --log-prefix "_CALI_FWD_TO_POD
filter " --log-level 1

sudo iptables -t filter -I cali-from-wl-dispatch 1 -j LOG --log-prefix "_CALI_ FWD_FROM POD
filter " --log-level 1

sudo iptables -t filter -I cali-tw-calillaba968e90 1 -j LOG --log-prefix
" CALI_FWD AT POD WP filter " --log-level 1

sudo iptables -t filter -I cali-tw-cali545edbfd5b2 1 -j LOG --log-prefix
" CALI_FWD_AT POD DB filter " --log-level 1

© 2021 Cisco and/or its affiliates. All rights reserved. Page 52 of 76

sudo iptables -t filter
--log-level 1

sudo iptables -t filter
" --log-level 1

sudo iptables -t filter
--log-level 1

#4## NAT ###4#

sudo iptables -t nat -I

sudo iptables -t nat -I
log-level 1

sudo iptables -t nat -I
" --log-level 1

sudo iptables -t nat -I
" KUBE_NGINX WKR_1 DNAT

sudo iptables -t nat -I
" _KUBE_NGINX WKR_2 DNAT

sudo iptables -t nat -I

-I cali-from-hep-forward 1 -j LOG --log-prefix " CALI_INPUT filter "

-I cali-from-hep-forward 1 -j LOG --log-prefix " CALI_OUTPUT filter

-I KUBE-FORWARD 1 -j LOG --log-prefix "_ KUBE_FORWARD CSTATE filter "

cali-PREROUTING 1 -j LOG --log-prefix "_CALI_PRT nat " --log-level 1

KUBE-NODEPORTS 1 -j LOG --log-prefix " KUBE NODEPORTS_ NGINX nat " --

KUBE-SVC-D3XY3KFIPC4U6KQS

KUBE-SEP-AH3PTBOUGNT5BH3N
nat " --log-level 1

KUBE-SEP-JKWKVBBQCO4U3ZLS
nat " --log-level 1

KUBE-SVC-Y5XG6JG74RRE503W

" _KUBE_SVC WP_FRONTEND nat " --log-level 1

sudo iptables -t nat -I

KUBE-SEP-QAOWPL7S7I7Y6Q3X

" _KUBE_WP_FRNTEND WKR 2 DNAT nat " --log-level 1

sudo iptables -t nat -I
" --log-level 1

sudo iptables -t nat -I
" _KUBE WP DB _WKR_ 2 DNAT

sudo iptables -t nat -I
--log-level 1

sudo iptables -t nat -I

KUBE-SVC-235M40ZWKIE6GYSD
KUBE-SEP-WAAL3DOSOAXDLALS
nat " --log-level 1

KUBE-SVC-TCOU7JCQXEZGVUNU

KUBE-SEP-GD4HYCW4WSZW4UQN

1 -j LOG --log-prefix "_KUBE_SVC_NGINX nat

2 -j LOG --log-prefix

2 -j LOG --log-prefix

1 -j LOG --log-prefix

2 -j LOG --log-prefix

1 -j LOG --log-prefix "_KUBE_SVC_WP_DB nat

2 -j LOG --log-prefix

1 -j LOG --log-prefix " KUBE SVC_DNS nat "

2 -j LOG --log-prefix "_KUBE_ DNS_ CNTL DNAT

nat " --log-level 1

sudo iptables -t nat -I KUBE-SEP-A34722GV4XXAYJWX 2 -j LOG --log-prefix

" KUBE DNS WKR 2 DNAT nat " --log-level 1

sudo iptables -t nat -I cali-OUTPUT 1 -j LOG --log-prefix "_CALI OUTPUT nat " --log-level 1

sudo iptables -t nat -I cali-nat-outgoing 1 -j LOG --log-prefix " CALI_NAT_ OUTGOING_ NAT nat

" --log-level 1

sudo iptables -t nat -I KUBE-POSTROUTING 3 -j LOG --log-prefix "_KUBE_POSTROUTING NAT nat "

--log-level 1

e A grep patterns file was created to filter the required output logs,

systemd\ | rsyslogd\ | kubelet\ |named\ |=6443\ |sshd\|SRC=127.0.0.1\|192.168.104.67\|192.168.8.232
\1192.168.8.228\]192.168.8.231\|192.168.8.195\|192.168.8.227\ |DPT=10254\ |[DPT=8181\ | DPT=8080\
| SPT=22\ |DPT=22\ | SPT=443\ | DPT=443\ | SPT=179\ | DPT=179\ | SPT=123\ | DPT=123

© 2021 Cisco and/or its affiliates. All rights reserved.

Page 53 of 76

o A SED patterns file was used to convert the IP addresses into more relevant names,
s/MAC=.*SRC/SRC/g
s/10.1.0.89/client_browser/g
s/10.1.110.108/control_ensl92/g
s/10.1.110.102/worker_1 ensl92/g
s/10.1.110.107/worker_2 ensl92/g
s/192.168.165.192/control_tunnell/g
s/192.168.104.64/worker_1 tunnelO/g
s/192.168.8.192/worker_ 2 tunnelO/g
s/192.168.104.65/nginx pod worker 1/g
s/192.168.8.193/nginx pod worker 2/g
s/10.1.110.105/ingress_loadbalancer_ip/g
s/192.168.8.222/wordpress_frontend/g
s/192.168.8.223/wordpress_db/g
s/192.168.8.207/kube_dns/g
s/192.168.165.196/kube_dns/g
s/10.96.23.229/wordpress_db_svc/g
s/10.96.0.10/kube-dns-svec/g
s/10.96.179.211/nginx_svc_cluster_ip/g
s/cali7394c99cdd4/nginx workerl veth/g
s/cali2lac0ad37cb/nginx worker2 veth/g
s/cali8d8a05feeed4/coredns_worker 1 veth/g
s/calild8b7202262/coredns_worker 2 veth/g
s/calillaba%968e90/wordpress_frontend veth/g
s/cali545edbfd5b2/wordpress_db_veth/g

e The output was cut into columns and added to a table to achieve the end result.

cat /var/log/messages | grep -v -f grep patterns_to_remove | sed -f sed patterns | cut -d '

' -£5,6,7,8,9,10,17,18,19,22 | showtable -d " " -

titles=CHAIN, TABLE,IN INTERFACE,OUT_ INTERFACE, SRC,DST,PROTOCOL,SOURCE PORT,DEST PORT,TCP_FLA
G | sed 's/* *//g' | more

Figure 56.
Example of /var/log/messages

© 2021 Cisco and/or its affiliates. All rights reserved. Page 54 of 76

Figure 57.
Example of output without SED replacement

Figure 58.
Example of output with SED replacement

High-level flow

o Client browser connects to Wordpress (https://10.1.110.105/wordpress).

O & 10.1.110.105

IKS

Just another WordPress site

Figure 59.
Accessing the Wordpress frontend

o ARP sends a request for IKS NGINX IKS LoadBalancer IP (10.1.110.105).

© 2021 Cisco and/or its affiliates. All rights reserved. Page 55 of 76

https://10.1.110.105/wordpress

ARP: Who has 10.1.110.105 (NGINX

Worker?2 eth0 (ens192) LoadBalancer IP)?

10.1.110.107
00:50:56:93:1c:47

MetalLB: Send it to 00:50:56:93:1c:47

) D) JED) B K

Core Metal LB NGINX Wordpress Wordpress
DNS Speaker Ingress Frontend DB

192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222 192.168.8.223

1072 1RQ Q NIJA

Figure 60.
ARP request and response

kubetail -1 app=metallb -n iks -k pod

Will tail 4

Figure 61.
Output from the metallb logs

$ kubectl get svc -n iks
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
essential-cert-manager ClusterIP 10.96.177.6 <none> 9402/TCP

essential-cert-manager-webhook ClusterIP 10.96.198.217 _<none> 443 /TCP
essential-nginx-ingress-ingress-nginx-controller LoadBalancer 10.96.179.211 10.1.110.105 80:32045/TCP, 443 :306888/TCP
essential-nginx-ingress-ingress-nginx-defaultbackend ClusterIP 10.96.222.183 <none> 80/TCP

Figure 62.
Output from the kubectl get svc -n iks command

© 2021 Cisco and/or its affiliates. All rights reserved. Page 56 of 76

o MetallLB speaker (worker 2) responds - send it to 00:50:56:93:1c:47 (MAC of ens192 on worker 2).
« The IPTables Raw, Mangle, and NAT tables of the Prerouting chain are used.

o Connection tracking is used to check the state as part of the Mangle table.

Worker2 eth0 (ens192) Kubernetes Services
10.1.110.107 iptables rules
00:50:56:93:1c:47
Prerouting Routine Forward Postrouting
raw | mangle | nat mangle | filter mangle | nat

iptables checks connection state using
conntrack

o EE 3

Core Metal LB NGINX Wordpress Wordpress
DNS Speaker Ingress Frontend DB

192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222 192.168.8.223

Figure 63.
Client browser to NGINX Ingress - Prerouting chain

Figure 64.
Logging from the client browser to NGINX Ingress - Prerouting chain

s-networ-aci 72ba:~$ sudo iptables -L cali-PRERQUTING -t raw -nv

Figure 65.
Logging from the client browser to NGINX Ingress - Prerouting chain

© 2021 Cisco and/or its affiliates. All rights reserved. Page 57 of 76

Figure 66.
Logging from the client browser to NGINX Ingress showing connection tracking integration - Prerouting chain

SOURCE PORT = 58927 NGINX POD IP = 192.168.8.193

Figure 67.
Connection tracking output

o DNAT is used to rewrite the destination (pod) address.
« Since there are two NGINX ingress pods (one on each worker node), Kubernetes selects one at random.

° In this example, the local ingress pod on worker 2 is selected.

Worker2

ethO (ens192)

10.1.110.107
00:50:56:93:1c:47

DNAT rewrites the destination (pod)
address

Core Metal LB NGINX Wordpress Wordpress
DNS Speaker Ingress Frontend DB

192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222 192.168.8.223

Figure 68.
Prerouting DNAT

© 2021 Cisco and/or its affiliates. All rights reserved. Page 58 of 76

[OUT=nginx TRy Caclien [DST=nginx

Figure 69.
Logging showing Prerouting DNAT

s -L KUBE

Figure 70.
Output from IPTables showing the rule for NGINX

lancer IP */

Figure 71.
Output from IPTables showing the rule for NGINX

There are two NGINX pods (endpoints) Kubernetes selects one at random

Figure 72.
Output from IPTables showing the NGINX pods

5d72ba:~$ s

sential-nginx

DNAT rewrites the destination (pod)
address

Figure 73.
Output from IPTables showing the DNAT rule for the NGINX pod

© 2021 Cisco and/or its affiliates. All rights reserved. Page 59 of 76

« A forwarding decision is made based on routing information. Since the NGINX destination pod is local,
the traffic is dispatched to the relevant Calico veth interface on worker 2.

o The Calico IPTables rules accept the traffic destined to the pod.

Worker?2

ethO (ens192)

10.1.110.107 Routing decision, interface is local

00:50:56:93:1c:47

Core Metal LB NGINX Wordpress Wordpress
DNS Speaker Ingress Frontend DB
192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222 192.168.8.223

Figure 74.
Client browser to NGINX ingress - routing and forward

CHAIN

Twingr
| DST=ngir

Figure 75.
Logging from the client browser to NGINX Ingress - routing and forward chain

Figure 76.
Output from calicoctl tool showing Kubernetes pod, node, and veth mapping

© 2021 Cisco and/or its affiliates. All rights reserved. Page 60 of 76

iksadmin@iks-networking-example-cl-iks-networ-ac625d72ba:~% route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.1.110.254 0.0.0.0 UG (%] ens192
10.1.110.0 .0 255.255. U ens192

192 _1AR 255 255 1l *

192.168. 255.255. . UH cali2lac@ad37cb
192.168. 255.255. . UH calibdlca548147
192.168. 255.255. . UH cali3@a777a3d43
192.168. 255.255. . UH calia26d9304875
192.168. 255.255. . UH cali9f5ef@74fca
192.168. 255.255. . UH calic@6ac2@9aaf
192.168. 255.255. . UH cali75c@fo6e38e7
192.168. 255.255. . UH calil48b7202262
192.168. 255.255. . UH calillaba968e90
192.168. 255.255. . UH caliS545edbfdSb2
192.168. 255.255.255. UH cali3f20c28cl4b
192.168. 255.255. . UH cali53f8b&d2a7d
192.168. 255.255. . UH cali33db9c276ba
192.168. 255.255. . UH calia3d29bea@dc
192.168. 255.255. . UH calie2fddf4fdab
192.168. 255.255. . UH calia4af789adZ3
192.168. 255.255. . UH caliadfd50@b9acl
192.168.8.231 255.255. . UH calib83b3d6d156
192.168.8.232 . 255.255. . UH calib2d89a1b@f3
192.168.104.64 10.1.110.102 255.255. . I[¢ tunl@
192.168.165.192 10.1.110.108 255.255. . UG tunl@

[

192
.193
.194
.195
.200
.201
.202
.203
.207
.222
.223
.224
.225
.226
.227
.228
.229
.230

3
8
8
8
8
8
8
8
8
8
8

S0 0000000000000 S
[IS TSI S I S I GO IS IO IS IO IS IOV S IOV S IS S T

(SIS IS TSRS I I S IS IS S IS I IS IS IS S IS RS TS IS
(]

S 00000000

Co 00 00 00 0O 0O OO0 00 00

000000 9e® 9@
(SIS IS I S SIS IS I IS IS IS IS TS IS IS IS IS IS RS S S
00900000 9e e

Figure 77.
Output from routing table showing local veth interface

traffic: from workload (pod), to workload cali+ is wilcard for calico (veth)
(pod), to host endpoint (node) interfaces

iksadmin@iks-networking-exa tks-networ-ac625d72ba:~$ sudo iptables -l OWWARD -t filter -nv
Chain cali-FORWARD (1 refer
pkts bytes target prot in out source destination
93 26122 MARK all - * B 0.0:9.0/0 /* cali:vjrMICRpgqwySoRoX */ MARK and Oxffflffff
57 5033 cali-from-wl-dispatch all -- cali+ * .0.0.0/1 .0.0.0/ /* cali:8ZoYfOSHKXWbB3pk */
36 21089 cali-to-wl-dispatch all -- * cali+ .0.0. .0.0. /* cali:jdEuaPBel4V2hutn */
4] Q cali-to-hep-forward all -- * .0.0. .0.0. /* cali:12bcbHljsMKsmfr- */

Figure 78.
IPTables rules for Calico local veth interfaces

networ-acb25d72ba:~$ sudo iptables -L cali-to-wl-dispatch -t filter

calia
calib+

cal

Figure 79.
IPTables rules for Calico local veth interfaces

© 2021 Cisco and/or its affiliates. All rights reserved.

Page 61 of 76

ba:~$ sudo iptables

Figure 80.
IPTables rules for Calico local veth interfaces

o Traffic traverses the NAT table in the Postrouting chain and sent to the veth interface on the NGINX
worker 2 pod.

Worker2

ethO (ens192)

10.1.110.107
00:50:56:93:1c:47

Core Metal LB NGINX Wordpress Wordpress
DNS Speaker Ingress Frontend DB
192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222 192.168.8.223

Figure 81.
Postrouting to NGINX ingress

cl-iks-ne ca g v -f grep. move sed -f sed_patterns | cut -d ' ' -f 5,6,7,8,9,10,18,19,17,22,2 ontable -d " " -ti
T_INTERFACE,

+ + +

| TABLE IN_INTERFACE | TCP_FLAG |

4+ 4 +

NAT | nat | IN= ou g S r ST=ngl 2 5 ACK

ACK

Figure 82.
Logging showing NGINX Ingress - postrouting chain

© 2021 Cisco and/or its affiliates. All rights reserved. Page 62 of 76

Figure 83.
IPTables rules showing the postrouting chain

do iptables -L KUBE-POSTROUTING

Figure 84.
IPTables rules showing the postrouting chain

o Traffic is sent from the NGINX pod to the Wordpress frontend pod based on the NGINX ingress
configuration (stored within the nginx.conf file on the ingress controller pods).

Worker2 eth0 (ens192)

10.1.110.107
00:50:56:93:1c:47

Core Metal LB
DNS Speaker

NGINX
Ingress

192.168.8.207 10.1.110.107 192.168.8.193

Figure 85.
NGINX ingress to Wordpress frontend

© 2021 Cisco and/or its affiliates. All rights reserved.

veth veth

Coo S

Wordpress Wordpress
Frontend DB

192.168.8.222 192.168.8.223

Page 63 of 76

sed_patterns | cut -d ' '

PORT | DEST_P!

+
| DPT:

_CALI_PRT

Figure 86.
Logging showing NGINX ingress to Wordpress frontend - prerouting chain

$ kubectl describe ing

Warning: extensions/vibetal Ingress is deprecated in v1.14+, unavailable in v1.22+; use networking.k8s.io/v1 Ingress
Name : applications
Namespace: default
Address: 10.1.110.105
Default backend: default-http-backend:80 (<error: endpoints "default-http-backend"” not found>)
Rules:

Host Path Backends

*
/guestbook frontend:80 192.168.8.202:80,192.168.8.203:80,192.168.8.230:80)
/wordpress wordpress-frontend:80 192.168.8.222:80)
Annotations: <none>
Events: <none>

Figure 87.
Output from kubectl describe ingress command

location /wordpress {

set Snamespace "default”;
set $ingress_name ‘"applications";
set $service_name "";

set $service_port :
set $location_path "/wordpress";

rewrite_by_lua_block {

lua_ingress.rewrite({
force_ssl_redirect = false,
ssl_redirect = true,
force_no_ssl_redirect = false,
use_port_in_redirects = false,

})

balancer.rewrite()

plugins.run()

}

be careful with “access_by_lua_block™ and ‘satisfy any’ directives as satisfy any

will always succeed when there's ‘access_by_lua_block® that does not have any lua code doing 'ngx.exit(ngx.DECLINED)’
other authentication method such as basic auth or external auth useless - all requests will be allowed.
#access_by_lua_block {

#}

header_filter_by_lua_block {
lua_ingress.header()
plugins.run()

}

body_filter_by_lua_block {
}

log_by_lua_block {
balancer.log()

monitor.call()

plugins.run()

port_in_redirect off;

set _Sbalancer_ewma_score -1:

set Sproxy_upstream_name "default-wordpress-frontend-80";
set $proxy_host Sproxy_upstream_name,

set Spass_access_scheme $scheme;

set $pass_server_port Sserver_port;

set Sbest_http_host Shttp_host;
set $pass_port Spass_server_port;

Figure 88.
nginx.conf showing the wordpress ingress rules

© 2021 Cisco and/or its affiliates. All rights reserved. Page 64 of 76

o Traffic is forwarded from the NGINX pod veth interface to the veth interface on the Wordpress frontend
pod.

Worker2

ethO (ens192)

10.1.110.107
00:50:56:93:1c:47

A

Wordpress Wordpress
Frontend DB

192.168.8.222 192.168.8.223

Figure 89.
NGINX ingress to Wordpress frontend - routing and forward

Figure 90.
Logging NGINX ingress to Wordpress frontend - routing and forward chains

© 2021 Cisco and/or its affiliates. All rights reserved. Page 65 of 76

o Traffic traverses the IPTables NAT table in the Postrouting chain to forward the traffic onto the
Wordpress frontend veth interface.

Worker2

ethO (ens192)

10.1.110.107
00:50:56:93:1c:47

4

Wordpress Wordpress
Frontend DB

192.168.8.222 192.168.8.223

Figure 91.
NGINX ingress to Wordpress frontend - postrouting

Figure 92.
Logging NGINX ingress to Wordpress frontend - postrouting chain

e« The Wordpress frontend sends traffic to the Wordpress DB service.

o The Wordpress frontend deployment has the DB host (WORDPRESS_DB_HOST) configured, pointing to
the DB Kubernetes Service, wordpress-db

e The pod resolves the service name to the service IP address by sending the DNS query to a Kube-DNS
pod.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 66 of 76

kind: Deployment
apiVersion: apps/vl
metadata:
name: wordpress-frontend
labels:

tier: wordpress-frontend

matchLabels:
tier: wordpress-frontend
temp late:
metadata:
labels:
tier: wordpress-frontend

volumes:
- name: wordpress-persistent-storage
persistentVolumeClaim:
claimName: wp-pv-claim
containers:
- name: wordpress
image: 'wordpress:4.8-apache'’
workingDir: /var/www/html/wordpress—-frontend
ports:
- name: wordpress
containerPort: 80
protocol: TCP
env:
- name: WORDPRESS_DB_HOST
value: wordpress—-db

kind: Service
apiVersion: vl
metadata:
name: wordpress-db
labels:
tier: wordpress-db
spec:
ports:

- protocol: TCP
port: 3306
targetPort: 3306

selector:

tier: wordpress-db

type: ClusterIP

Figure 93.
YAML description of Wordpress frontend deployment and Wordpress DB service

© 2021 Cisco and/or its affiliates. All rights reserved. Page 67 of 76

Worker2

ethO (ens192)

10.1.110.107
00:50:56:93:1c:47

Core Metal LB NGINX Wordpress Wordpress
DNS Speaker Ingress Frontend DB
192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222 192.168.8.223

Figure 94.
Wordpress frontend to CoreDNS to resolve Wordpress DB service

f sed_patterns

Figure 95.

Logging showing Wordpress frontend to CoreDNS to resolve Wordpress DB service - forward and postrouting chains

tepdump captured from within the
Wordpress Frontend pod

root@wordpress-frontend-7b884dd698-d8wd4 : /var /www/html/wordpress# tcpdump -i eth® port 53
tepdump: verl 1 protocol decode
listening on e e 262144 by

S5 uster.local. (
rontend-7b884dd698-d: .cluster.liocal. (56)
IP kube-dns.kube-system.svc.cluster.local.domain > wordpr
5 IP kube-dns.kube .d wordpr
IP wordpress-frontend 9 . 3 e-dns. kub
9 IP kube-dns.kube-system.svc.cluster.local.domain > wordpress-frontend-7b884dd698-d8wd4.39778:

stem.svc. er.loc
frontend-7b884dd698-d8w44 . 337" 91%- 8/1/0 (149)
frontend-7b884dd698-dBwa4 52%- 1/8/8 A 18.96.2
stem.svc.cluster.local.doma: 8978+ PTR? 10.8.96.18.

29 (118)
in-addr
@8978%- 1/8/8 PTR kube-dns.kube-.

c.cluster.local. (116)

Figure 96.
tcpdump from within the Wordpress frontend pod showing the DNS requests for the wordpress-db service

$ kubectl get svc -n kube-system
NAME TYPE CLUSTER-IP
calico-typha ClusterIP 10.96.0.11
kube-dns ClusterIP 10.96.0.10

EXTERNAL-IP
<none>
<none>

PORT(S)
5473/TCP
53/UDP, 53/TCP, 9153/TCP

root@wordpress-frontend-7b884dd698-d8w44 : /var /www/html/wordpress# cat /etc/resolv.conf
nameserver 10.96.0.10
search default.svc.cluster.local svc.cluster.local cluster.local

Figure 97.
Output from within the Wordpress frontend pod showing the configured nameserver as the kube-dns service

© 2021 Cisco and/or its affiliates. All rights reserved.

Page 68 of 76

o Traffic traverses the IPTables NAT table in the Prerouting chain.

Worker2 eth0 (ens192)

10.1.110.107
00:50:56:93:1¢c:47 Kubernetes Service:

Cluster IP to Pod IP

=

Core Metal LB NGINX Wordpress
DNS Speaker Ingress Frontend
192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222

Figure 98.
Wordpress frontend to Wordpress DB - prerouting

QUT_INTERFACE

Wordpress
DB

192.168.8.223

Figure 99.
Logging the Wordpress frontend to Wordpress DB - prerouting chain

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
frontend ClusterIP 10.96.127.227 <none> 80/TCP

kubernetes ClusterIP 10.96.0.1 <none> 443 /TCP
wordpress-db ClusterIP 10.96.23.229 <none> 3306/TCP

wordpress-frontend ClusterIP 10.96.233.48 <none> 86/TCP

Figure 100.
Output from the kubectl get service command showing the wordpress-db port

© 2021 Cisco and/or its affiliates. All rights reserved.

Page 69 of 76

dpt:80

tep dpt
P *

tep dpt:80

IP */ tcp dpt:8

tcp dpt:8
nginx-controller:htt ter IP */ tep
oller:htt
roller:ht

YPE match dst-type LOCAL

Figure 101.
IPTables rules to direct traffic to the wordpress-db port

-networking-example-cl-iks-networ-ac625d72ba:~$ sudo iptables -L KUBE-SVC -t nat -nv
(UBE-SVC-3USFPP53] 3 1 references)
opt in out source destination
OE46GCZWTKQG44A all -- * * rdpr
rking-example-cl-iks-networ-ac625d72ba:~$ 3 -nv

Chain K S ZWTKQG44A (1 referenc
pkts tes target prot opt in out
a @_KIIRF -MARK all__--_*

4] @ DNAT tep *

Figure 102.
IPTables rules to direct traffic to the wordpress-db port

e Using the IPTables Filter and NAT tables in the Forward and Postrouting chains, the traffic is sent to the
veth interface on the Wordpress DB pod.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 70 of 76

Worker2

ethO (ens192)

10.1.110.107
00:50:56:93:1c:47

Core Metal LB NGINX Wordpress Wordpress
DNS Speaker Ingress Frontend DB

192.168.8.207 10.1.110.107 192.168.8.193 192.168.8.222 192.168.8.223

Figure 103.
Wordpress frontend to Wordpress DB - routing, forward, and postrouting

IN_INTERF

TATE | filter | IN=wordpress_fro
TING_NAT | nat I IN:

Figure 104.
Logging from Wordpress frontend to Wordpress DB - routing, forward, and postrouting chains

nntrack -L -p tcp --dport

1

ED] mark=0 use=1

Figure 105.
Output from connection tracking

© 2021 Cisco and/or its affiliates. All rights reserved. Page 71 of 76

All the traffic in the example so far has been located on the same worker node. In many cases pods may be
running across multiple nodes in the Kubernetes cluster. When this occurs, the traffic will leave one node and
enter a second node where the workload is running. As previously described, IKS uses Calico for container
networking and implements IP-IP tunneling.

Figure 106 provides an example of the forwarding behaviour when traffic is sent between Kubernetes nodes in
IKS.

« In the example, the client traffic has reached Worker 2, based on the ARP response from MetalLB.

o There are two NGINX pods and, through the IPTables rules, it is determined that the NGINX pod on
Worker 1 is used for the connection.

« Based on a route lookup, the traffic is sent to the tunl0 interface and encapsulated (IP in IP
encapsulation).

o Traffic is sent out the ens192 interface to the NGINX pod on Worker 1.

Worker2 eth0 (ens192)

10.1.110.107

/ 00:50:56:93:1c:47

Traffic sent to NGINX Pod on
Worker 1 via tunlO

Figure 106.

Example flow showing tunnelled traffic from worker 2 to worker 1

© 2021 Cisco and/or its affiliates. All rights reserved. Page 72 of 76

DST=nginx

Pod on Worker 1 is IP-in-IP tunnel
selected

Figure 107.
Logging from IPTables showing showing traffic is directed to NGINX on worker 1

Kubernetes selects one at random (this
There are two NGINX pods (endpoints) example shows the pod on Worker1
selected)

Figure 108.
IPTables rules showing two NGINX pods

$ kubectl get pods -o wide -n il
STATUS RESTARTS AGE
Completed] 1ed .1.118.188 iks-networking-example-cl-controlpl-1c6b752d98
Completed 18d .1.118.188 iks-networking-example-cl-controlpl-1c6b752d98
a-j869r / ompleted 1ad 18.1.110.168 iks-networking-example-cl-controlpl-1c6b752d98
tial-cert-manager-qwd97 Completed 1ed 8.1.118.188 iks-networking-example-cl-controlpl-1céb752d9e
L / Completed 1ed .1.110.188 iks-networking-example-cl-
apply-essential-nginx-ingre e ompleted 1ed 8. . iks-networkil
-essential-registry- Comple 8 18d .1.118. iks
Completed @ 18d
Running 1ed
ert-manager-655bcdf95b-rvsj4 / Running 1 1ed
ert-manager-cainjector-7696469f9¢c-n9d4m / Running 1ed
rt-manager-webhook-56f654c674-gd1lmb Running 8 1ed
essential-metallb-controller-647bbb85b7-s924w Running 18d iks-networking
ential-mete -speaker-2| Running e 12d 1@.1.110.188 iks-networking-
ential-metallb-speal 1 Running 18.1.118.187 iks-networking-example-cl-iks-n
Running 18ed 18.1.118.182 iks-networking-example-cl-iks-networ-7ab29bc950
ontroller-7ndcw A Runnina 18d . iks:
Running 18d _ 192.168.184.65 iks-networking-exampl
Running 192.168 iks-networking-

Figure 109.
Output from kubectl get pods -0 wide -n iks command showing the selected NGINX pod is running on worker 1

© 2021 Cisco and/or its affiliates. All rights reserved. Page 73 of 76

iksadmin@iks-networking-example-cl-iks-networ-ac625d72ba:~$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.1.110.254 0.0.0.0 uG @ @ ens192
10.1.110.0 .0 255.255. U ens192
192.168.8.192 255.255. . U *

192.168.8.193 255.255. . UH cali2lac@ad37cb
192.168.8.194 255.255. . UH calibdlca548147
192.168.8.195 255.255. . UH cali3@a777a3d43
192.168.8.200 255.255. . UH calia26d9304875
192.168.8.201 255.255. . UH cali9f5ef@74fca
192.168.8.202 255.255. . UH calic@6ac2@9aaf
192.168.8.203 255.255. . UH cali75c@fbe38e7
192.168.8.207 255.255. . UH calil48b7202262
192.168.8.222 255.255. . UH calillaba968e90@
192.168.8.223 255.255. . UH cali545edbfdSb2
192.168.8.224 255.255. . UH cali3f20c28cl4b
192.168.8.225 255.255. . UH cali53f8b&d2a7d
192.168.8.226 255.255. . UH cali33db9c276ba
192.168.8.227 255.255. . UH calia3d29bea@dc
192.168.8.228 255.255. . UH calie2fddf4fdab
192.168.8.229 255.255. . UH calia4af789ad23
192.168.8.230 255.255. . UH caliadfd50@b9acl
192.168.8.231 255.255. . UH calib83b3d6d156
192.168.8.232 .0 255.255. . UH calib2d89a1b@f3
192.168.104.64 10.1.110.102 255.255. . uG tunl@
192.168.165.192 10.1.110.108 255.255. . UG tunl@

0o GO OO 0O CO OO0 CO OO CO OO COo CO OO CO OO GO 0O O 0O GO
S0 00000000000 @

(SIS RO IR O B O I O I G OV S GO TGS G IS IS T B s B I OIS G

0000000000000 &
(s I IS T I S SV S G IS TGS TGS B T IS IS I B S S

(]

SIS IS I S B ST S TS IS S IS IS B IS TS TS IS I RS B S IS I S
(SIS IS I S T SIS TS I R S IS G IS IS IS IS IS IS IS B S IS I S
SIS SIS IS B ST S TS IS S IS IS B IS IS IS IS IS IS B S IS B S N

Figure 110.
Output from the routing table on worker 2 indicating the traffic for worker 1 should use the tunlO interface

Troubleshooting IKS networking connectivity

Figure 111.
Output from the kubectl get pods -n iks command

© 2021 Cisco and/or its affiliates. All rights reserved. Page 74 of 76

Figure 112.
Output from the kubectl get pods -n kube-system command

Figure 113.
Output from the kubectl get services -n iks command

T A e Ny

NAME CLUSTER-IP EXTERNAL-IP PORT(S)
calico-typha ClusterIP 10.96.0.11 <none> 5473/TCP
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP

Figure 114.
Output from the kubectl get services -n kube-system command

AGE
22h
23h

Figure 115.
Output from the kubectl get describe service frontend command

NAME CLASS HOSTS ADDRESS PORTS

guestbook <none> * 10.1.110.105 80

Figure 116.
Output from the kubectl get ingress command

© 2021 Cisco and/or its affiliates. All rights reserved.

AGE
15h

Page 75 of 76

guestbook

default

10.1.110.105
default-http-backend:80 (<

Path Backends

/guestbook frontend:8@ (192.168.43.152:80,192.168.8.202:80,192.168.8.203:80)
/sockshop sockshop:8@ (<none>)
Annotations:
kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"extensions/vlbetal"
e":"default"}, "spec”: {"rules":[{"http":{"paths":[{"backend":{"serviceName":"frontend","

nginx.ingress.kubernetes.io/rewrite-target:
Events:

Figure 117.
Output from the kubectl describe ingress guestbook command

NAME ENDPOINTS ' AGE

frontend 192.168.43.152:80,192.168.8.202:80,192.168.8.203:80 15h
kubernetes 10.1.110.103:6443 23h

Figure 118.
Output from the kubectl get endpoints command

Americas Headquarters Asia Pacific Headquarters Europe Headquarters
Cisco Systems, Inc. Cisco Systems (USA) Pte. Ltd. Cisco Systems International BV Amsterdam,
San Jose, CA Singapore The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at https://www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks,
go to this URL: https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner
does not imply a partnership relationship between Cisco and any other company. (1110R)

Printed in USA C11-2655904-00 11/21

© 2021 Cisco and/or its affiliates. All rights reserved. Page 76 of 76

